in

Defoliation-induced changes in foliage quality may trigger broad-scale insect outbreaks

  • Swank, W. T., Waide, J. B., Crossley, D. A. & Todd, R. L. Insect defoliation enhances nitrate export from forest ecosystems. Oecologia 51, 297–299 (1981).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hunter, M. D. Insect population dynamics meets ecosystem ecology: effects of herbivory on soil nutrient dynamics. Agric. For. Entomol. 3, 77–84 (2001).

    Article 

    Google Scholar 

  • Metcalfe, D. B. et al. Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests. Ecol. Lett. 17, 324–332 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Metcalfe, D. B., Crutsinger, G. M., Kumordzi, B. B. & Wardle, D. A. Nutrient fluxes from insect herbivory increase during ecosystem retrogression in boreal forest. Ecology 97, 124–132 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Lovett, G. M. et al. Insect defoliation and nitrogen cycling in forests. Bioscience 52, 335 (2002).

    Article 

    Google Scholar 

  • Frost, C. J. & Hunter, M. D. Recycling of nitrogen in herbivore feces: Plant recovery, herbivore assimilation, soil retention, and leaching losses. Oecologia 151, 42–53 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Le Mellec, A. & Michalzik, B. Impact of a pine lappet (Dendrolimus pini) mass outbreak on C and N fluxes to the forest floor and soil microbial properties in a Scots pine forest in Germany. Can. J. Res. 38, 1829–1841 (2008).

    Article 
    CAS 

    Google Scholar 

  • Grüning, M. M., Simon, J., Rennenberg, H. & L-M-Arnold, A. Defoliating insect mass outbreak affects soil N fluxes and tree N nutrition in scots pine forests. Front. Plant Sci. 8, 954 (2017).

  • Mikola, J., Yeates, G. W., Barker, G. M., Wardle, D. A. & Bonner, K. I. Effects of defoliation intensity on soil food-web properties in an experimental grassland community. Oikos 92, 333–343 (2001).

    Article 

    Google Scholar 

  • Chapman, S. K., Hart, S. C., Cobb, N. S., Whitham, T. G. & Koch, G. W. Insect herbivory increases litter quality and decomposition: an extension of the acceleration hypothesis. Ecology 84, 2867–2876 (2003).

    Article 

    Google Scholar 

  • Pitman, R. M., Vanguelova, E. I. & Benham, S. E. The effects of phytophagous insects on water and soil nutrient concentrations and fluxes through forest stands of the Level II monitoring network in the UK. Sci. Total Environ. 409, 169–181 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kaukonen, M. et al. Moth herbivory enhances resource turnover in subarctic mountain birch forests? Ecology 94, 267–272 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Weintraub, M. Biological phosphorus cycling in arctic and alpine soils. In Phosphorus in Action (eds. Bünemann E., Oberson, A. & Frossard, E.) Vol. 26, p. 295–316 (Springer, 2011).

  • Högberg, P., Näsholm, T., Franklin, O. & Högberg, M. N. Tamm review: on the nature of the nitrogen limitation to plant growth in fennoscandian boreal forests. Ecol. Manag. 403, 161–185 (2017).

    Article 

    Google Scholar 

  • Maynard, D. G. et al. How do natural disturbances and human activities affect soils and tree nutrition and growth in the Canadian boreal forest? Environ. Rev. 22, 161–178 (2014).

    CAS 
    Article 

    Google Scholar 

  • Wan, S., Hui, D. & Luo, Y. Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: a Meta-Analysis. Ecol. Appl. 11, 1349–1365 (2001).

    Article 

    Google Scholar 

  • Hart, S. A. & Chen, H. Y. H. Understory vegetation dynamics of North American boreal forests. CRC Crit. Rev. Plant Sci. 25, 381–397 (2006).

    Article 

    Google Scholar 

  • Martineau, C., Beguin, J., Séguin, A. & Paré, D. Cumulative effects of disturbances on soil nutrients: predominance of antagonistic short-term responses to the salvage logging of insect-killed stands. Ecosystems 23, 812–827 (2020).

    CAS 
    Article 

    Google Scholar 

  • Coulombe, D., Sirois, L. & Paré, D. Effect of harvest gap formation and thinning on soil nitrogen cycling at the boreal–temperate interface. Can. J. Res. 47, 308–318 (2017).

    CAS 
    Article 

    Google Scholar 

  • Grenon, F., Bradley, R. L. & Titus, B. D. Temperature sensitivity of mineral N transformation rates, and heterotrophic nitrification: Possible factors controlling the post-disturbance mineral N flush in forest floors. Soil Biol. Biochem. 36, 1465–1474 (2004).

    CAS 
    Article 

    Google Scholar 

  • Guntiñas, M. E., Leirós, M. C., Trasar-Cepeda, C. & Gil-Sotres, F. Effects of moisture and temperature on net soil nitrogen mineralization: A laboratory study. Eur. J. Soil Biol. 48, 73–80 (2012).

    Article 
    CAS 

    Google Scholar 

  • Houle, D., Duchesne, L. & Boutin, R. Effects of a spruce budworm outbreak on element export below the rooting zone: a case study for a balsam fir forest. Ann. Sci. 66, 707–707 (2009).

    Article 
    CAS 

    Google Scholar 

  • Griffin, J. M. & Turner, M. G. Changes to the N cycle following bark beetle outbreaks in two contrasting conifer forest types. Oecologia 170, 551–565 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Orwig, D. A., Cobb, R. C., D’Amato, A. W., Kizlinski, M. L. & Foster, D. R. Multi-year ecosystem response to hemlock woolly adelgid infestation in southern New England forests. Can. J. Res. 38, 834–843 (2008).

    Article 

    Google Scholar 

  • McMillin, J. D. & Wagner, M. R. Chronic defoliation impacts pine sawfly (Hymenoptera: Diprionidae) performance and host plant quality. Oikos 79, 357 (1997).

    Article 

    Google Scholar 

  • Pureswaran, D. S., Johns, R., Heard, S. B. & Quiring, D. Paradigms in eastern spruce budworm (Lepidoptera: Tortricidae) population ecology: a century of debate. Environ. Entomol. 45, 1333–1342 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Vidal, M. C. & Murphy, S. M. Bottom-up vs. top-down effects on terrestrial insect herbivores: a meta-analysis. Ecol. Lett. 21, 138–150 (2018).

    PubMed 
    Article 

    Google Scholar 

  • White, T. C. R. The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia 63, 90–105 (1984).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • White, T. C. R. An alternative hypothesis explains outbreaks of conifer-feeding budworms of the genus Choristoneura (Lepidoptera: Tortricidae) in Canada. J. Appl. Entomol. 142, 725–730 (2018).

    Article 

    Google Scholar 

  • Bouchard, M., Régnière, J. & Therrien, P. Bottom-up factors contribute to large-scale synchrony in spruce budworm populations1. Can. J. Res. 48, 277–284 (2018).

    CAS 
    Article 

    Google Scholar 

  • I-M-Arnold, A. et al. Forest defoliator pests alter carbon and nitrogen cycles. R. Soc. Open Sci. 3, 1–7 (2016).

    Google Scholar 

  • Pureswaran, D. S. et al. Climate-induced changes in host tree–insect phenology may drive ecological state-shift in boreal forests. Ecology 96, 1480–1491 (2015).

    Article 

    Google Scholar 

  • MFFP (Ministère des Forêts de la Faune et des Parcs). Aires infestées par la tordeuse des bourgeons de l’épinette au Québec en 2019 – Version 1.1. (2019).

  • Forkner, R. E. & Hunter, M. D. What goes up must come down? Nutrient addition and predation pressure on oak herbivores. Ecology 81, 1588–1600 (2000).

    Article 

    Google Scholar 

  • Schlesinger, W. H. Some thoughts on the biogeochemical cycling of potassium in terrestrial ecosystems. Biogeochemistry 154, 427–432 (2021).

    Article 

    Google Scholar 

  • Kristensen, J. A., Metcalfe, D. B. & Rousk, J. The biogeochemical consequences of litter transformation by insect herbivory in the Subarctic: a microcosm simulation experiment. Biogeochemistry 138, 323–336 (2018).

    CAS 
    Article 

    Google Scholar 

  • Kagata, H. & Ohgushi, T. Ecosystem consequences of selective feeding of an insect herbivore: Palatability-decomposability relationship revisited. Ecol. Entomol. 36, 768–775 (2011).

    Article 

    Google Scholar 

  • Kagata, H. & Ohgushi, T. Positive and negative impacts of insect frass quality on soil nitrogen availability and plant growth. Popul. Ecol. 54, 75–82 (2012).

    Article 

    Google Scholar 

  • Weihrauch, D. & O’Donnell, M. J. Mechanisms of nitrogen excretion in insects. Curr. Opin. Insect Sci. 47, 25–30 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Choudhury, D. Herbivore induced changes in leaf-litter resource quality: a neglected aspect of herbivory in ecosystem nutrient dynamics. Oikos 51, 389–393 (1988).

    Article 

    Google Scholar 

  • Régnière, J. & You, M. A simulation model of spruce budworm (Lepidoptera: Tortricidae) feeding on balsam fir and white spruce. Ecol. Modell. 54, 277–297 (1991).

    Article 

    Google Scholar 

  • Balducci, L. et al. The paradox of defoliation: declining tree water status with increasing soil water content. Agric. Meteorol. 290, 108025 (2020).

    Article 

    Google Scholar 

  • Conant, R. T. et al. Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward. Glob. Change Biol. 17, 3392–3404 (2011).

    Article 

    Google Scholar 

  • Doran, O., MacLean, D. A. & Kershaw, J. A. Needle longevity of balsam fir is increased by defoliation by spruce budworm. Trees – Struct. Funct. 31, 1933–1944 (2017).

    Article 

    Google Scholar 

  • Wu, Y., Maclean, D. A., Hennigar, C. & Taylor, A. R. Interactions among defoliation level, species, and soil richness determine foliage production during and after simulated spruce budworm attack. Can. J. Res. 50, 565–580 (2020).

    Article 

    Google Scholar 

  • Fierravanti, A., Rossi, S., Kneeshaw, D., De Grandpré, L. & Deslauriers, A. Low non-structural carbon accumulation in spring reduces growth and increases mortality in conifers defoliated by spruce budworm. Front. Glob. Change 2, 1–13 (2019).

    Article 

    Google Scholar 

  • Hennigar, C. R., MacLean, D. A., Quiring, D. T. & Kershaw, J. A. Differences in spruce budworm defoliation among balsam fir and white, red, and black spruce. For. Sci. 54, 158–166 (2008).

    Google Scholar 

  • Bognounou, F., De Grandpré, L., Pureswaran, D. S. & Kneeshaw, D. Temporal variation in plant neighborhood effects on the defoliation of primary and secondary hosts by an insect pest. Ecosphere 8, e01759 (2017).

    Article 

    Google Scholar 

  • Li, F. et al. Responses of tree and insect herbivores to elevated nitrogen inputs: a meta-analysis. Acta Oecologica 77, 160–167 (2016).

    Article 

    Google Scholar 

  • Shaw, G. G., Little, C. H. A. & Durzan, D. J. Effect of fertilization of balsam fir trees on spruce budworm nutrition and development. Can. J. Res. 8, 364–374 (1978).

    CAS 
    Article 

    Google Scholar 

  • Mattson, W. J., Haack, R. A., Lawrence, R. K. & Slocum, S. S. Considering the nutritional ecology of the spruce budworm in its management. Ecol. Manag. 39, 183–210 (1991).

    Article 

    Google Scholar 

  • Metcalfe, D. B. et al. Ecological stoichiometry and nutrient partitioning in two insect herbivores responsible for large-scale forest disturbance in the Fennoscandian subarctic. Ecol. Entomol. 44, 118–128 (2019).

    Article 

    Google Scholar 

  • Kaitaniemi, P., Ruohomäki, K., Ossipov, V., Haukioja, E. & Pihlaja, K. Delayed induced changes in the biochemical composition of host plant leaves during an insect outbreak. Oecologia 116, 182–190 (1998).

    PubMed 
    Article 

    Google Scholar 

  • Fuentealba, A. & Bauce, É. Interspecific variation in resistance of two host tree species to spruce budworm. Acta Oecol. 70, 10–20 (2016).

    Article 

    Google Scholar 

  • Nealis, V. G. & Régnière, J. Insect – host relationships influencing disturbance by the spruce budworm in a boreal mixedwood forest. Can. J. Res. 1882, 1870–1882 (2004).

    Article 

    Google Scholar 

  • Greenbank, D. O. Staminate flowers and the spruce budworm. Mem. Entomol. Soc. Can. 95, 202–218 (1963).

    Article 

    Google Scholar 

  • Sturtevant, B. R., Cooke, B. J., Kneeshaw, D. D. & MacLean, D. A. Modeling insect disturbance across forested landscapes: insights from the spruce budworm. in Simulation Modeling Of Forest Landscape Disturbances. 93–134 (Springer, 2015).

  • Zalucki, M. P., Clarke, A. R. & Malcolm, S. B. Ecology and behavior of first instar larval Lepidoptera. Annu. Rev. Entomol. 47, 361–393 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Despland, E. Effects of phenological synchronization on caterpillar early-instar survival under a changing climate1. Can. J. Res. 48, 247–254 (2018).

    Article 

    Google Scholar 

  • Mattson, W. J. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11, 119–161 (1980).

    Article 

    Google Scholar 

  • Greenbank, D. O. The role of climate and dispersal in the initiation of the spruce budworm outbreak in New Brunswick: II. The role of dispersal. Can. J. Zool. 35, 385–403 (1957).

    Article 

    Google Scholar 

  • Boulanger, Y. et al. The use of weather surveillance radar and high-resolution three dimensional weather data to monitor a spruce budworm mass exodus flight. Agric. Meteorol. 234–235, 127–135 (2017).

    Article 

    Google Scholar 

  • Landry, J. S. & Parrott, L. Could the lateral transfer of nutrients by outbreaking insects lead to consequential landscape-scale effects? Ecosphere 7, e01265 (2016).

    Article 

    Google Scholar 

  • Andersen, T., Elser, J. J. & Hessen, D. O. Stoichiometry and population dynamics. Ecol. Lett. 7, 884–900 (2004).

    Article 

    Google Scholar 

  • Environment Canada. Canadian climate normals: 1981-2010 Climate normals and averages. (2015). Available at: http://climate.weather.gc.ca/climate_normals/index_e.html. (Accessed: 5 April 2016).

  • De Grandpré, L., Morissette, J. & Gauthier, S. Long-term post-fire changes in the northeastern boreal forest of Quebec. J. Veg. Sci. 11, 791–800 (2000).

  • Gauthier, S., Boucher, D., Morissette, J. & De Grandpré, L. Fifty-seven years of composition change in the eastern boreal forest of Canada. J. Veg. Sci. 21, 772–785 (2010).

    Google Scholar 

  • Bouchard, M. & Pothier, D. Spatiotemporal variability in tree and stand mortality caused by spruce budworm outbreaks in eastern Quebec. Can. J. Res. 40, 86–94 (2010).

    Article 

    Google Scholar 

  • Fettes, J. J. Investigations of sampling techniques for population studies of the spruce budworm on balsam fir in Ontario (Forest Insect Laboratory, 1950).

  • Miller, R. O. High-Temperature oxidation: dry ashing. In Handbook of Reference Methods for Plant Analysis (ed. Karla, Y. P.) 53–56 (CRC Press, Taylor & Francis Group, 1998).

  • Trottier-Picard, A. et al. Amounts of logging residues affect planting microsites: a manipulative study across northern forest ecosystems. Ecol. Manag. 312, 203–215 (2014).

    Article 

    Google Scholar 

  • RCoreTeam. R.: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2021).

  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & RCoreTeam. _nlme: Linear and Nonlinear Mixed Effects Models_. (2020).

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.6.0. (2021).


  • Source: Ecology - nature.com

    Cohort dominance rank and “robbing and bartering” among subadult male long-tailed macaques at Uluwatu, Bali

    Solar-powered desalination device wins MIT $100K competition