MacArthur, R. H. & Wilson, E. O. The theory of island biogeography (Princeton University Press, 1967).
MacArthur, R. H. & Wilson, E. O. An equilibrium theory of insular zoogeography. Evolution 17, 373–387 (1968).
Caraballo, H. Emergency department management of mosquito-borne illness: malaria, dengue, and west nile virus. Emerg. Med. Pract. 16(5), 1–2 (2014).
Google Scholar
Rejmánková, E., Grieco, J., Achee, N., Roberts, DR. Ecology of larval habitats. In: Manguin S, editor. Anopheles mosquitoes: new insights into malaria vectors 9th. InTech; Rijeka: pp. 397–446. (2013).
Sharma, M., Quader, S., Guttal, V. & Isvaran, K. The enemy of my enemy: multiple interacting selection pressures lead to unexpected anti-predator responses. Oecologia 192(1), 1–12 (2020).
Google Scholar
Yee, D. A., Kesavaraju, B. & Juliano, S. A. Interspecific differences in feeding behavior and survival under food-limited conditions for larval Aedes albopictus and Aedes aegypti (Diptera: Culicidae). Ann. Entomol. Soc. Am. 97, 720–728 (2006).
Messina, J. P. et al. The current and future global distribution and population at risk of dengue. Nat. Microbiol. 4, 1508–1515 (2019).
Google Scholar
Rose, N. H. et al. Climate and urbanization drive mosquito preference for humans. Curr. Biol. 30, 3570-3579.e6 (2020).
Google Scholar
Day, J. F. Mosquito oviposition behavior and vector control. Insects 7(4), 65 (2016).
Google Scholar
McBride, C. S. Genes and odors underlying the recent evolution of mosquito preference for humans. Curr. Biol. 26, R41–R46 (2016).
Google Scholar
Southerst, R. W. Global change and human vulnerability to vector-borne diseases. Clin. Microbiol. Rev. 17, 136–173 (2004).
Vitousek, P. M. Nutrient cycling and limitation: Hawai‘i as a model system (Princeton University Press, 2004).
Grant, P. R. & Grant, B. R. How and why species multiply: the radiation of darwin’s finches (Princeton University Press, 2011).
Cliff, A. D. & Haggett, P. The epidemiological significance of islands. Health Place. 1, 199–209 (1995).
Arrhenius, O. Species and area. J. Ecol. 9(1), 95–99 (1921).
Preston, F. W. Time and space and the variation of species. Ecology 41(4), 611–627 (1960).
Rosenzweig, M. L. Species diversity in space and time (Cambridge University Press, 1995).
Drakare, S. et al. The imprint of the geographical, evolutionary and ecological context on species-area relationships. Ecol. Lett. 9: 215 227. (2006).
Kotiaho, J., Kaitala, V., Komonen, A. & Päivinen, J. Predicting the risk of extinction from shared ecological characteristics. Proc. Natl. Acad. Sci. USA 102, 1963–1967 (2005).
Google Scholar
Bataille, A. et al. Natural colonization and adaptation of a mosquito species in Galápagos and its implications for disease threats to endemic wildlife. Proc. Nat. Acad. Sci. 106(25), 10230–10235 (2009).
Google Scholar
Sinka, M. E. et al. A new malaria vector in Africa: predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proc. Nat. Acad. Sci. 117(40), 24900–24908 (2020).
Google Scholar
Powell, J.R. Genetic variation in insect vectors: death of typology? Insects. 11;9(4):139. (2018).
Whittaker, R. H. Communities and ecosystems (Macmillan, 1975).
Nekola, J. C. & White, P. S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26, 867–878 (1999).
Green, J. L. et al. Spatial scaling of microbial eukaryote diversity. Nature 432, 747–750 (2004).
Google Scholar
Horner-Devine, M. C., Lage, M. & Hughes, J. B. Bohannan BJ A taxa-area relationship for bacteria. Nature 432, 750–753 (2004).
Google Scholar
Martiny, J, B. H., Eisen, J.A., Penn, K., Allison, S.D., Horner-Devine, M.C. Drivers of bacterial beta-diversity depend on spatial scale. Proc. Natl. Acad. Sci. USA 108(19):7850−4. (2011).
Segre, H., Ron, R., de Malach, N., Henkin, Z., Mandel, M., Kadmon, R. Competitive exclusion, beta diversity, and deterministic vs. stochastic drivers of community assembly. Ecol. Lett., 17(11):1400−8. (2014).
Ishtiaq, F. et al. Biogeographical patterns of blood parasite lineage diversity in avian hosts from southern Melanesian islands. J. Biogeogr. 37, 120–132 (2010).
Barrera, R., Amador, M. & MacKay, A. J. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan. Puerto Rico. PLoS Negl. Trop. Dis. 5(12), e1378. https://doi.org/10.1371/journal.pntd.0001378 (2011).
Google Scholar
Campbell, K. M., Lin, C. D., Iamsirithaworn, S. & Scott, T. W. The complex relationship between weather and dengue virus transmission in Thailand. Am. J. Trop. Med. Hyg. 89, 1066–1080. https://doi.org/10.4269/ajtmh.13-0321 (2013).
Google Scholar
Evans, M. V. et al. Microclimate and larval habitat density predict adult Aedes albopictus abundance in Urban Areas. Am. J. Trop. Med. Hyg. 101(2), 362–370 (2019).
Google Scholar
Mustak, M. S. et al. The peopling of Lakshadweep Archipelago. Sci. Rep. 9, 6968 (2019).
Google Scholar
Sharma, S. K. & Hamzakoya, K. K. Geographical spread of Anopheles stephensi, vector of urban malaria, Aedes aegypti vector of Dengue/DHF, in the Arabian sea islands of Lakshadweep. India. Dengue Bull. 25, 88–91 (2001).
Sharma RS, Ali, MKS, Dhillon GPS. Epidemiological and entomological aspects of an outbreak of chikungunya in Lakshadweep islands, India, during 2007. Dengue Bull., 178–185 (2008).
Subramaniam, H., Ramoo, H. & Sumanam, S. D. Filariasis survey in the Laccadive, minicoy and amindivi Islands. Madras state. Indian J. Malariol. 12, 115–127 (1958).
Google Scholar
Roy, R. G., Joy, C. T., Hussain, C. M. & Mohamed, I. K. Malaria in Lakshadweep Islands. Indian J. Med. Res. 67, 924–925 (1978).
Google Scholar
Ali, S. M. K. et al. Study on the ecoepidemiology of chikungunya in UT of Lakshadweep. J. Commun. Dis. 41(2), 81–92 (2009).
Samuel, P. P., Krishnamoorthi, R., Hamzakoya, K. K. & Aggarwal, C. S. Entomo-epidemiological investigations on chikungunya outbreak in the Lakshadweep Islands. Indian Ocean. Indian J. Med. Res. 129(4), 442–445 (2009).
Google Scholar
Jayalakshmi, K. & Mathiarasan, L. Prevalence of disease vectors in Lakshadweep Islands during post-monsoon season. J. Vector Borne Dis. 55, 189–196 (2018).
Su, C. L. et al. Molecular epidemiology of Japanese encephalitis virus in mosquitoes in Taiwan during 2005–2012. PLoS Negl. Trop. Dis. 8, e3122 (2014).
Google Scholar
Muslim, A. et al. Armigeres subalbatus incriminated as a vector of zoonotic Brugia pahangi filariasis in suburban Kuala Lumpur. Peninsular Malaysia. Parasites Vectors 6, 219 (2013).
Google Scholar
Wilke, A. B. B. et al. Community composition and year-round abundance of vector species of mosquitoes make Miami-Dade County, Florida a receptive gateway for arbovirus entry to the United States. Sci. Rep. 9, 8732 (2019).
Google Scholar
Medeiros-Sousa, A. R., Fernandes, A., Ceretti-Junior, W., Wilke, A. B. B. & Marrelli, M. T. Mosquitoes in urban green spaces: using an island biogeographic approach to identify drivers of species richness and composition. Sci. Rep. 7, 17826 (2017).
Google Scholar
Lum, J. K., Kaneko, A., Taleo, G., Amos, M. & Reiff, D. M. Genetic diversity and gene flow of humans, Plasmodium falciparum, and Anopheles farauti s.s. of Vanuatu. inferred malaria dispersal and implications for malaria control. Acta Trop. 103, 102–107 (2007).
Google Scholar
Marques, T. C. et al. Mosquito (Diptera: Culicidae) assemblages associated with Nidularium and Vriesea bromeliads in Serra do Mar, Atlantic Forest, Brazil. Parasites Vectors 5, 41 (2012).
Google Scholar
Laporta, G. Z. & Sallum, M. A. M. Coexistence mechanisms at multiple scales in mosquito assemblages. BMC Ecol. 14, 30 (2014).
Google Scholar
Koenraadt, C. J. & Takken, W. Cannibalism and predation among larvae of the Anopheles gambiae complex. Med. Vet. Entomol. 17(1), 61–66 (2003).
Google Scholar
Chathuranga, W. G. D., Karunaratne, S. H. P. P., Priyanka, W. A. & De Silva, P. Predator–prey interactions and the cannibalism of larvae of Armigeres subalbatus (Diptera: Culicidae). J. Asia-Pac. Entomol. 23, 124–131 (2020).
Focks, D. A. & Chadee, D. D. Pupal survey: an epidemiologically significant surveillance method for Aedes aegypti: an example using data from Trinidad. Am. J. Trop. Med. Hyg. 56(2), 159–167 (1997).
Google Scholar
Lounibos, L. P., Bargielowski, I., Carrasquilla, M. C. & Nishimura, N. Coexistence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Peninsular Florida two decades after competitive displacements. J. Med. Entomol. 53, 1385–1390 (2016).
Google Scholar
Juliano, S. A. Species interactions among larval mosquitoes: context dependence across habitat gradients. Annu. Rev. Entomol. 54, 37–56 (2009).
Google Scholar
Bargielowski, I.E., Lounibos, L.P., Carrasquilla, M.C. Evolution of resistance to satyrization through reproductive character displacement in populations of invasive dengue vectors. Proc. Natl. Acad. Sci. 19:110(8):2888–92. (2013).
Chadee, D. D. Dengue cases and Aedes aegypti indices in Trinidad. West Indies. Acta Trop. 112(2), 174–180 (2009).
Google Scholar
XX. https://www.census2011.co.in/census/state/lakshadweep.html
Christophers, S. R. The fauna of British India, including Ceylon and Burma; Diptera: Family Culicidae; Tribe Anophelini Vol. 4 (Taylor & Francis, 1933).
Barraud, P.J. The fauna of British India, including Ceylon and Burma. Diptera V. Family Culicidae. Tribes Megarhinini and Culicini. London: Taylor and Francis p. 463. (1934).
Walther, B. A., Cotgreave, P., Price, R. D., Gregory, R. D. & Clayton, D. H. Sampling effort and parasite species richness. Parasitol. Today 11, 306–310 (1995).
Google Scholar
Chao, A. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984).
Oksanen, J. et al. Vegan: community ecology package. R Package Version 2(10), 2013 (2015).
R Core Team. R Development Core Team. R A Lang. Environ. Stat. Comput. 55, 275–286 (2016).
McFadden, D. Conditional logit analysis of qualitative choice behavior. Front. Econ. 1, 105–142 (1974).
Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).
Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monograph. 27, 325–349 (1957).
Sokal, R. R. & Rohlf, F. J. Biometry: the principles and practice of statistics in biological research 3rd edn. (Freeman, 1995).
Google Scholar
Fortin, M. J. & Dale, M. R. T. Spatial analysis: a guide for ecologists 1–30 (Cambridge University Press, 2005).
Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. http://florianhartig.github.io/DHARMa/. (2019).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
World Health Organization, Guidelines for dengue surveillance and mosquito control. Western Pacific Education in Action Series No.8 (WHO, Geneva, 1995)
Source: Ecology - nature.com