in

Endocranial volume increases across captive generations in the endangered Mexican wolf

  • Sol, D., Bacher, S., Reader, S. M. & Lefebvre, L. Brain size predicts the success of mammal species introduced into novel environments. Am. Nat. 172(Suppl. 1), S63–S71 (2008).

    PubMed 
    Article 

    Google Scholar 

  • González-Lagos, C., Sol, D. & Reader, S. M. Large-brained mammals live longer. J. Evol. Biol. 23, 1064–1074 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Gonda, A., Herczeg, G. & Merilä, J. Evolutionary ecology of intraspecific brain size variation: A review. Ecol. Evol. 3(8), 2751–2764 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Benson-Amram, S., Dantzer, B., Stricker, G., Swanson, E. M. & Holekamp, K. E. Brain size predicts problem-solving ability in mammalian carnivores. PNAS 113(9), 2532–2537 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Näslund, J., Aarestrup, K., Thomassen, S. T. & Johnsson, J. I. Early enrichment effects on brain development in hatchery-reared Atlantic salmon (Salmo salar): No evidence for a critical period. Can. J. Fish. Aquat. Sci. 69(9), 1481–1490 (2012).

    Article 

    Google Scholar 

  • Logan, C. J., Kruuk, L. E. B., Stanley, R., Thompson, A. M. & Clutton-Brock, T. H. Endocranial volume is heritable and is associated with longevity and fitness in a wild mammal. R. Soc. Open Sci. 3(12), 160622 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yamaguchi, N., Kitchener, A. C., Gilissen, E. & MacDonald, D. W. Brain size of the lion (Panthera leo) and the tiger (P. tigris): Implications for intrageneric phylogeny, intraspecific differences and the effects of captivity. Biol. J. Linn. Soc. 98, 85–93 (2009).

    Article 

    Google Scholar 

  • Turschwell, M. P. & White, C. R. The effects of laboratory housing and spatial enrichment on brain size and metabolic rate in the eastern mosquitofish Gambusia holbrooki. Biol. Open. 5(3), 205–210 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Welniak-Kaminska, M. et al. Volumes of brain structures in captive wild-type and laboratory rats: 7T magnetic resonance in vivo automatic atlas-based study. PLoS ONE 14(4), e0215348 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Guay, P. J., Parrott, M. & Selwood, L. Captive breeding does not alter brain volume in a marsupial over a few generations. Zoo Biol. 31, 82–86 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Isler, K. et al. Endocranial volumes of primate species: Scaling analyses using a comprehensive and reliable data set. J. Hum. Evol. 55(6), 967–978 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Burns, J. G., Saravanan, A. & Rodd, F. H. Rearing environment affects the brain size of guppies: Lab-reared guppies have smaller brains than wild-caught guppies. Ethol. 115(2), 122–133 (2009).

    Article 

    Google Scholar 

  • Kruska, D. On the evolutionary significance of encephalization in some eutherian mammals: Effects of adaptive radiation, domestication, and feralization. Brain Behav. Evol. 65(2), 73–108 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Logan, C. J. & Clutton-Brock, T. H. Validating methods for estimating endocranial volume in individual red deer (Cervus elaphus). Behav. Processes. 92, 143–146 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Colby, A. E., Kimock, C. M. & Higham, J. P. Endocranial volume is variable and heritable, but not related to fitness, in a free-ranging primate. Sci. Rep. 11, 1–11 (2021).

    Article 
    CAS 

    Google Scholar 

  • Stuermer, I. W. & Wetzel, W. Early experience and domestication affect auditory discrimination learning, open field behaviour and brain size in wild Mongolian gerbils and domesticated Laboratory gerbils (Meriones unguiculatus forma domestica). Behav. Brain Res. 173, 11–21 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Agnvall, B., Bélteky, J. & Jensen, P. Brain size is reduced by selection for tameness in red junglefowl-correlated effects in vital organs. Sci. Rep. 7(3306), 1–7 (2017).

    CAS 

    Google Scholar 

  • Röhrs, M. & Ebinger, P. Wild is not really wild: Brain weight of wild and domestic mammals. Berl. Munch. Tierarztliche Wochenschrift. 112(6–7), 234–238 (1999).

    Google Scholar 

  • Smith, B. P., Lucas, T. A., Norris, R. M. & Henneberg, M. Brain size/body weight in the dingo (Canis dingo): Comparisons with domestic and wild canids. Aust. J. Zool. 65(5), 292–301 (2017).

    Article 

    Google Scholar 

  • Roberts, T., McGreevy, P. & Valenzuela, M. Human induced rotation and reorganization of the brain of domestic dogs. PLoS ONE 5(7), e11946 (2010).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Pollen, A. A. et al. Environmental complexity and social organization sculpt the brain in Lake Tanganyikan cichlid fish. Brain Behav. Evol. 70, 21–39 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Kihslinger, R. L., Lema, S. C. & Nevitt, G. A. Environmental rearing conditions produce forebrain differences in wild Chinook salmon Oncorhynchus tshawytscha. Comp. Biochem. Physiol. 145(2), 145–151 (2006).

    CAS 
    Article 

    Google Scholar 

  • Guay, P. J. & Iwaniuk, A. N. Captive breeding reduces brain volume in waterfowl (Anseriformes). Condor 110(2), 276–284 (2008).

    Article 

    Google Scholar 

  • Diamond, M. C., Ingham, C. A., Johnson, R. E., Bennett, E. L. & Rosenzweig, M. R. Effects of environment on morphology of rat cerebral cortex and hippocampus. J. Neurobiol. 7, 75–85 (1976).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Courtney Jones, S. K., Munn, A. J. & Byrne, P. G. Effect of captivity on morphology: Negligible changes in external morphology mask significant changes in internal morphology. R. Soc. Open Sci. 5(5), 1–13 (2018).

    Article 

    Google Scholar 

  • Kruska, D. & Röhrs, M. Comparative-quantitative investigations on brains of feral pigs from the Galapagos Islands and of European domestic pigs. Z. Anat. Entwicklungsgesch. 144(1), 61–73 (1974).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kruska, D. Changes of brain size in Tylopoda during phylogeny and caused by domestication. Verh. Dtsch. Zool. Ges. 75, 173–183 (1982).

    Google Scholar 

  • Groves, C. P. Skull-changes due to captivity in certain Equidae. Z. Säugetierkd. 31, 44–46 (1966).

    Google Scholar 

  • Groves, C. P. The skulls of Asian rhinoceroses: Wild and captive. Zoo Biol. 1, 251–261 (1982).

    Article 

    Google Scholar 

  • Hollister, N. Some effects of environment and habit on captive lions. Proc. US. Natl. Mus. 53, 177–193 (1917).

    Article 

    Google Scholar 

  • Price, E. O. Behavioral development in animals undergoing domestication. Appl. Anim. Behav. Sci. 65(3), 245–271 (1999).

    Article 

    Google Scholar 

  • Wolff, J. Das Gesetz der Transformation der Knochen (A. Hirchwild, 1892).

    Google Scholar 

  • Herring, S. W. Formation of the vertebrate face: Epigenetic and functional influences. Am. Zool. 33, 472–483 (1993).

    Article 

    Google Scholar 

  • Wroe, S. & Milne, N. Convergence and remarkably consistent constraint in the evolution of carnivore skull shape. Evol. 61(5), 1251–1260 (2007).

    Article 

    Google Scholar 

  • Damasceno, E. M., Hingst-Zaher, E. & Astúa, D. Bite force and encephalization in the Canidae (Mammalia: Carnivora). J. Zool. 290(4), 246–254 (2013).

    Article 

    Google Scholar 

  • Van Valkenburgh, B. Deja vu: the evolution of feeding morphologies in the Carnivora. Integr. Comp. Biol. 47, 147–163 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Van Valkenburgh, B. Carnivore dental adaptations and diet: A study of trophic diversity within guilds in Carnivore behavior, ecology, and evolution (ed. Gittleman, J. L.) 410–436 (Springer Science & Business Media, 1989).

  • Slater, G. J., Dumont, E. R. & Van Valkenburgh, B. Implications of predatory specialization for cranial form and function in canids. J. Zool. 278(3), 181–188 (2009).

    Article 

    Google Scholar 

  • Michaud, M., Veron, G. & Fabre, A. C. Phenotypic integration in feliform carnivores: Covariation patterns and disparity in hypercarnivores versus generalists. Evol. 74(12), 2681–2702 (2020).

    Article 

    Google Scholar 

  • O’Regan, H. J. & Kitchener, A. C. The effects of captivity on the morphology of captive, domesticated and feral mammals. Mamm. Rev. 35, 215–230 (2005).

    Article 

    Google Scholar 

  • Kapoor, V., Antonelli, T., Parkinson, J. A. & Hartstone-Rose, A. Oral health correlates of captivity. Res. Vet. Sci. 107, 213–219 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Mitchell, D. R., Wroe, S., Ravosa, M. J. & Menegaz, R. A. More challenging diets sustain feeding performance: Applications toward the captive rearing of wildlife. Integr. Org. Biol. 3, 1–13 (2021).

    Google Scholar 

  • Curtis, A. A., Orke, M., Tetradis, S. & Van Valkenburgh, B. Diet-related differences in craniodental morphology between captive-reared and wild coyotes, Canis latrans (Carnivora: Canidae). Biol. J. Linn. Soc. 123(3), 677–693 (2018).

    Article 

    Google Scholar 

  • Siciliano-Martina, L., Light, J. E. & Lawing, A. M. Cranial morphology of captive mammals: A meta-analysis. Front. Zool. 18(4), 1–13 (2021).

    Google Scholar 

  • Corruccini, R. S. & Beecher, R. M. Occlusal variation related to soft diet in a nonhuman primate. Science 218, 74–75 (1982).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ramirez Rozzi, F. V., González-José, R. & Pucciarelli, H. M. Cranial growth in normal and low-protein-fed Saimiri An environmental heterochrony. J. Hum. Evol. 49(4), 515–535 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Taylor, A. B. & van Schaik, C. P. Variation in brain size and ecology in Pongo. J. Hum. Evol. 52, 59–71 (2007).

    PubMed 
    Article 

    Google Scholar 

  • AZA Canid TAG. Large Canid (Canidae) Care Manual. (Association of Zoos and Aquariums, 2012).

  • Mexican Wolf Species Survival Plan. Mexican Gray Wolf Husbandry Manual: Guidelines for Captive Management (2009 edition). (Mexican Wolf Species Survival Plan and U.S. Fish and Wildlife Service, 2009).

  • Carrera, R. et al. Comparison of Mexican wolf and coyote diets in Arizona and New Mexico. The J. Wildl. Manag. 72(2), 376–381 (2008).

    Article 

    Google Scholar 

  • Reed, J. E. et al. Diets of free-ranging Mexican gray wolves in Arizona and New Mexico. Wildl. Soc. Bull. 34(4), 1127–1133 (2006).

    Article 

    Google Scholar 

  • Kazimierska, K., Biel, W. & Witkowicz, R. Mineral composition of cereal and cereal-free dry dog foods versus nutritional guidelines. Molecules 25(21), 1–24 (2020).

    Article 
    CAS 

    Google Scholar 

  • Pezzali, J. G. & Aldrich, C. G. Effect of ancient grains and grain-free carbohydrate sources on extrusion parameters and nutrient utilization by dogs. J. Anim. Sci. 98(2), 3758–3767 (2019).

    Article 

    Google Scholar 

  • Hartstone-Rose, A., Selvey, H., Villari, J. R., Atwell, M. & Schmidt, T. The three-dimensional morphological effects of captivity. PLoS ONE 9(11), 1–15 (2014).

    Article 
    CAS 

    Google Scholar 

  • Siciliano-Martina, L., Light, J. E. & Lawing, A. M. Changes in canid cranial morphology induced by captivity and conservation implications. Biol. Conserv. 257, 109143 (2021).

    Article 

    Google Scholar 

  • Hedrick, P. W. & Fredrickson, R. Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Conserv. Genet. 11(2), 615–626 (2010).

    Article 

    Google Scholar 

  • Greely, S. E. Mexican Wolf, Canis lupus baileyi, International Studbook 2018. Palm Desert, California. (2018).

  • Kalinowski, S. T., Hedrick, P. W. & Miller, P. S. No inbreeding depression observed in Mexican and red wolf captive breeding programs. Conserv. Biol. 13(6), 1371–1377 (1999).

    Article 

    Google Scholar 

  • Sakai, S. T., Whitt, B., Arsznov, B. M. & Lundrigan, B. L. Endocranial development in the coyote (Canis latrans) and gray wolf (Canis lupus): A computed tomographic study. Brain Behav. Evol. 91(2), 1–18 (2018).

    Article 

    Google Scholar 

  • Van Valkenburgh, B. Skeletal and dental predictors of body mass in carnivores in Body size in mammalian paleobiology: estimation and biological implications (eds. Damuth, J. & MacFadden, B. J.) (Cambridge University Press, 1990).

  • Rohlf, F. J. TPSDig2: a program for landmark development and analysis (2001).

  • Siciliano-Martina, L., Light, J. E., Riley, D. G. & Lawing, A. M. One of these wolves is not like the other: morphological effects and conservation implications of captivity in Mexican wolves. Anim. Conserv. 25, 77–90 (2021).

    Article 

    Google Scholar 

  • Zelditch, M. L., Donald, L., Swiderski, H., Sheets, D. & Fink, W. L. Geometric morphometrics for biologists: a primer. (Elsevier Academic Press, 2004).

  • Coster, A. pedigree: Pedigree functions. R package version 1.4 (2013).

  • Traylor-Holzer, K. (ed.). PMx user’s manual. Version 1.0. Apple Valley, MN: IUCN SSC Conservation Breeding Specialist Group. (2011).

  • Thomason, J. J. Cranial strength in relation to estimated biting forces in some Mammals. Can. J. Zool. 69, 2326–2333 (1991).

    Article 

    Google Scholar 

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 9(7), 676–682 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2020).

  • Cofran, Z. Brain size growth in wild and captive chimpanzees (Pan troglodytes). Am. J. Primat. 80(7), 1–8 (2018).

    Article 

    Google Scholar 

  • Witzenberger, K. A. & Hochkirch, A. Ex situ conservation genetics: A review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodivers. Conserv. 20(9), 1843–1861 (2011).

    Article 

    Google Scholar 

  • Gómez-Sánchez, D. et al. On the path to extinction: Inbreeding and admixture in a declining grey wolf population. Mole. Ecol. 27(18), 3599–3612 (2018).

    Article 

    Google Scholar 

  • Elbroch, M. Animal skulls: a guide to North American species. (Stackpole Books, 2006).

  • Conde, D. A., Flesness, N., Colchero, F., Jones, O. R. & Scheuerlein, A. An emerging role of zoos to conserve biodiversity. Science 331, 1390–1391 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Prado, E. L. & Dewey, K. G. Nutrition and brain development in early life. Nutr. Rev. 72(4), 267–284 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Hecht, E. E. et al. Neuromorphological changes following selection for tameness and aggression in the Russian farm-fox experiment. J. Neurosci. 41(28), 6144–6156 (2021).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • Bennett, E. L., Rosenzweig, M. R. & Diamond, M. C. Rat brain: Effects of environmental enrichment on wet and dry weights. Science 163(3869), 825–826 (1969).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cummins, R. A., Walsh, R. N., Budtz-Olsen, O. E., Konstantinos, T. & Horsfall, C. R. Environmentally-induced changes in the brains of elderly rats. Nature 243(5409), 516–518 (1973).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Welch, B. L., Brown, D. G., Welch, A. S. & Lin, D. C. Isolation, restrictive confinement or crowding of rats for one year. I. Weight, nucleic acids and protein of brain regions. Brain Res. 75, 71–84 (1974).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Energy storage important to creating affordable, reliable, deeply decarbonized electricity systems

    Barcoding and species delimitation of Iranian freshwater crabs of the Potamidae family (Decapoda: Brachyura)