Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).
Google Scholar
Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).
Google Scholar
United Nations Environment Programme. Spreading like Wildfire–The Rising Threat of Extraordinary Landscape Fires. A UNEP Rapid Response Assessment. (United Nations Environment Programme, Nairobi, 2022).
Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earth’s Future 7, 892–910 (2019).
Google Scholar
Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).
Google Scholar
Dennison, P. E., Brewer, S. C., Arnold, J. D. & Moritz, M. A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 41, 2928–2933 (2014).
Google Scholar
Westerling, A. L. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B: Biol. Sci. 371, 20150178 (2016).
Google Scholar
Pyne, S. J. Fire in America: A Cultural History of Wildland and Rural Fire. (University of Washington Press, 2017).
Fire and Resource Assessment Program. Fire Perimeters. Available: https://frap.fire.ca.gov/frap-projects/fire-perimeters/. (California Department of Forestry & Fire Protection, 2018).
Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase Western U.S. forest wildfire activity. Science 313, 940–943 (2006).
Google Scholar
Starrs, C. F., Butsic, V., Stephens, C. & Stewart, W. The impact of land ownership, firefighting, and reserve status on fire probability in California. Environ. Res. Lett. 13, 034025 (2018).
Google Scholar
Lydersen, J. M. et al. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event. Ecol. Appl. 27, 2013–2030 (2017).
Google Scholar
Parsons, D. J. & DeBenedetti, S. H. Impact of fire suppression on a mixed-conifer forest. For. Ecol. Manag. 2, 21–33 (1979).
Google Scholar
Vose, R., Easterling, D. R., Kunkel, K. & Wehner, M. Temperature Changes in the United States. (NASA, 2017).
Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. USA 114, 2946–2951 (2017).
Google Scholar
Stephens, S. L., Martin, R. E. & Clinton, N. E. Prehistoric fire area and emissions from California’s forests, woodlands, shrublands, and grasslands. For. Ecol. Manag. 251, 205–216 (2007).
Google Scholar
Sugihara, N. G., Van Wagtendonk, J. W., Fites-Kaufman, J., Shaffer, K. E. & Thode, A. E. Fire in California’s Ecosystems. (University of California Press, 2006).
Jin, Y. et al. Identification of two distinct fire regimes in Southern California: implications for economic impact and future change. Environ. Res. Lett. 10, 094005 (2015).
Google Scholar
Trollope, W. in Ecological Effects of Fire In South African Ecosystems. 199–217 (Springer, 1984).
Byram, G. M. in Forest Fire: Control and Use (ed. Davis, K. P.) 155–182 (McGraw-Hill, 1959).
McLauchlan, K. K. et al. Fire as a fundamental ecological process: Research advances and frontiers. J. Ecol. https://doi.org/10.1111/1365-2745.13403 (2020).
Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).
Google Scholar
Schroeder, W., Oliva, P., Giglio, L. & Csiszar, I. A. The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment. Remote Sens. Environ. 143, 85–96 (2014).
Google Scholar
Rothermel, R. C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels (USFS, 1972).
Hood, S. M., Varner, J. M., van Mantgem, P. & Cansler, C. A. Fire and tree death: understanding and improving modeling of fire-induced tree mortality. Environ. Res. Lett. 13, 113004 (2018).
Google Scholar
Cattau, M. E., Wessman, C., Mahood, A., Balch, J. K. & Poulter, B. Anthropogenic and lightning‐started fires are becoming larger and more frequent over a longer season length in the USA. Glob. Ecol. Biogeogr. 29, 668–681 (2020).
Google Scholar
Abatzoglou, J. T., Balch, J. K., Bradley, B. A. & Kolden, C. A. Human-related ignitions concurrent with high winds promote large wildfires across the USA. Int. J. Wildland Fire 27, 377–386 (2018).
Google Scholar
Fried, J. S. et al. Predicting the effect of climate change on wildfire behavior and initial attack success. Clim. Change 87, 251–264 (2008).
Google Scholar
van Wagtendonk, J. W. The history and evolution of wildland fire use. Fire Ecol. 3, 3–17 (2007).
Google Scholar
Sullivan, A. L. Wildland surface fire spread modelling, 1990–2007. 2: Empirical and quasi-empirical models. Int. J. Wildland Fire 18, 369–386 (2009).
Google Scholar
Wang, X. et al. Projected changes in fire size from daily spread potential in Canada over the 21st century. Environ. Res. Lett. 15, 104048 (2020).
Google Scholar
Parks, S. A. et al. High-severity fire: evaluating its key drivers and mapping its probability across western US forests. Environ. Res. Lett. 13, 044037 (2018).
Google Scholar
Hantson, S. et al. The status and challenge of global fire modelling. Biogeosciences 13, 3359–3375 (2016).
Google Scholar
Reinhardt, E. D. First Order Fire Effects Model: FOFEM 4.0, User’s Guide. (Intermountain Forest and Range Experiment Station, Forest Service, US …, 1997).
Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 1–11 (2015).
Google Scholar
Pateiro-Lopez, B. & Rodriguez-Casal, A. alphahull: Generalization of the Convex Hull of a Sample of Points in the Plane v. R package version 2.2 (2019).
Edelsbrunner, H., Kirkpatrick, D. & Seidel, R. On the shape of a set of points in the plane. IEEE Trans. Inf. theory 29, 551–559 (1983).
Google Scholar
Rodríguez Casal, A. & Pateiro López, B. Generalizing the Convex Hull of A Sample: the R Package alphahull. (2010).
Bell, D. M. et al. Multiscale divergence between Landsat-and lidar-based biomass mapping is related to regional variation in canopy cover and composition. Carbon Balance Manag. 13, 15 (2018).
Google Scholar
Abatzoglou, J. T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 33, 121–131 (2013).
Google Scholar
MTBS. Monitoring Trends in Burn Severity Data Access: Fire Level Geospatial Data. (MTBS). (2018).
Miller, J. D. et al. Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA. Remote Sens. Environ. 113, 645–656 (2009).
Google Scholar
Homer, C. et al. Completion of the 2011 National Land Cover Database for the conterminous United States–representing a decade of land cover change information. Photogrammetric Eng. Remote Sens. 81, 345–354 (2015).
Source: Ecology - nature.com