Wedding, L. M. et al. From principles to practice: a spatial approach to systematic conservation planning in the deep sea. Proc. R. Soc. B Biol. Sci. 280, 20131684 (2013).
Google Scholar
Kaiser, S., Smith, C. R. & MartínezArbizu, P. Editorial: Biodiversity of the Clarion Clipperton Fracture Zone. Mar. Biodivers. 47, 259–264 (2017).
Google Scholar
Bluhm, H. Monitoring megabenthic communities in abyssal manganese nodule sites of the East Pacific Ocean in association with commercial deep-sea mining. Aquat. Conserv. Mar. Freshw. Ecosyst. 4, 187–201 (1994).
Google Scholar
Simon-Lledó, E. et al. Multi-scale variations in invertebrate and fish megafauna in the mid-eastern Clarion Clipperton Zone. Prog. Oceanogr. 187, 102405 (2020).
Google Scholar
Simon-Lledó, E. et al. Megafaunal variation in the abyssal landscape of the Clarion Clipperton Zone. Prog. Oceanogr. 170, 119–133 (2019).
Google Scholar
Hein, J. R., Mizell, K., Koschinsky, A. & Conrad, T. A. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geol. Rev. 51, 1–14 (2013).
Google Scholar
Kuhn, T., Wegorzewski, A., Rühlemann, C. & Vink, A. Composition, formation, and occurrence of polymetallic nodules. In Deep-Sea Mining: Resource Potential Technical and Environmental Considerations (ed. Sharma, R.) 23–63 (Springer, 2017). https://doi.org/10.1007/978-3-319-52557-0_2.
Google Scholar
Simon-Lledó, E. et al. Ecology of a polymetallic nodule occurrence gradient: Implications for deep-sea mining. Limnol. Oceanogr. 64, 1883–1894 (2019).
Google Scholar
International Seabed Authority. Deep Seabed Minerals Contractors. https://www.isa.org.jm/deep-seabed-minerals-contractors?qt-contractors_tabs_alt=0#qt-contractors_tabs_alt (2020).
Jones, D. O. B. et al. Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS ONE 12, e0171750 (2017).
Google Scholar
Niner, H. J. et al. Deep-sea mining with no net loss of biodiversity: An impossible aim. Front. Mar. Sci. 5, 53 (2018).
Google Scholar
Kuhn, T., Uhlenkott, K., Vink, A., Rühlemann, C. & MartínezArbizu, P. Manganese nodule fields from the Northeast Pacific as benthic habitats. In Seafloor Geomorphology as Benthic Habitat: GeoHab Atlas of Seafloor Geomorphic Features and Benthic Habitats (eds Harris, P. T. & Baker, E.) 933–947 (Elsevier, 2020).
Google Scholar
Vanreusel, A., Hilario, A., Ribeiro, P. A., Menot, L. & Martínez Arbizu, P. Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Sci. Rep. 6, 26808 (2016).
Google Scholar
Amon, D. J. et al. Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule region in the eastern Clarion-Clipperton Zone. Sci. Rep. 6, 30492 (2016).
Google Scholar
De Forges, B. R., Koslow, J. A. & Poore, G. C. B. Diversity and endemism of the benthic seamount fauna in the southwest Pacific. Nature 405, 944–947 (2000).
Google Scholar
Lodge, M. et al. Seabed mining: International Seabed Authority environmental management plan for the Clarion-Clipperton Zone: A partnership approach. Mar. Policy 49, 66–72 (2014).
Google Scholar
Cuvelier, D. et al. Are seamounts refuge areas for fauna from polymetallic nodule fields?. Biogeosciences 17, 2657–2680 (2020).
Google Scholar
Wedding, L. M. et al. Managing mining of the deep seabed. Science 349, 144–145 (2015).
Google Scholar
International Seabed Authority. Decision of the Council of the International Seabed Authority relating to amendments to the Regulations on the Prospecting and Exploration for Polymetallic Nodules in the Area and related matters. (2013).
International Seabed Authority. Recommendations for the guidance of contractors for the assessment of the possible environmental impacts arising from exploration for marine minerals in the Area. (2020).
Jones, D. O. B., Ardron, J. A., Colaço, A. & Durden, J. M. Environmental considerations for impact and preservation reference zones for deep-sea polymetallic nodule mining. Mar. Policy 118, 103312 (2020).
Google Scholar
Uhlenkott, K., Vink, A., Kuhn, T. & Martínez Arbizu, P. Predicting meiofauna abundance to define preservation and impact zones in a deep-sea mining context using random forest modelling. J. Appl. Ecol. 57, 1210–1221 (2020).
Google Scholar
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
Google Scholar
Ostmann, A. & Martínez Arbizu, P. Predictive models using random forest regression for distribution patterns of meiofauna in Icelandic waters. Mar. Biodivers. 48, 719–735 (2018).
Google Scholar
Uhlenkott, K., Vink, A., Kuhn, T., Gillard, B. & Martínez Arbizu, P. Meiofauna in a potential deep-sea mining area: Influence of temporal and spatial variability on small scale abundance models. Diversity 13, 3 (2021).
Google Scholar
Gazis, I.-Z., Schoening, T., Alevizos, E. & Greinert, J. Quantitative mapping and predictive modeling of Mn nodules’ distribution from hydroacoustic and optical AUV data linked by random forests machine learning. Biogeosciences 15, 7347–7377 (2018).
Google Scholar
Ellis, N., Smith, S. J. & Pitcher, C. R. Gradient forests: Calculating importance gradients on physical predictors. Ecology 93, 156–168 (2012).
Google Scholar
Miljutina, M. A., Miljutin, D. M., Mahatma, R. & Galéron, J. Deep-sea nematode assemblages of the Clarion-Clipperton Nodule Province (Tropical North-Eastern Pacific). Mar. Biodivers. 40, 1–15 (2010).
Google Scholar
Miljutin, D., Miljutina, M. & Messié, M. Changes in abundance and community structure of nematodes from the abyssal polymetallic nodule field, Tropical Northeast Pacific. Deep Sea Res. Oceanogr. Res. Pap. 106, 126–135 (2015).
Google Scholar
Pape, E., Bezerra, T. N., Hauquier, F. & Vanreusel, A. Limited spatial and temporal variability in meiofauna and nematode communities at distant but environmentally similar sites in an area of interest for deep-sea mining. Front. Mar. Sci. 4, 205 (2017).
Google Scholar
Hauquier, F. et al. Distribution of free-living marine nematodes in the Clarion-Clipperton Zone: Implications for future deep-sea mining scenarios. Biogeosciences 16, 3475–3489 (2019).
Google Scholar
Uhlenkott, K., Vink, A., Kuhn, T. & Martínez Arbizu, P. Meiofauna abundance and distribution predicted with random forest regression in the German exploration area for polymetallic nodule mining, Clarion Clipperton Fracture Zone, Pacific. (2020).
Calinski, T. & Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. Theory Methods 3, 1–27 (1974).
Google Scholar
Thiel, H. et al. The large-scale environmental impact experiment DISCOL: Reflection and foresight. Deep Sea Res. 48, 3869–3882 (2001).
Google Scholar
Brown, A., Wright, R., Mevenkamp, L. & Hauton, C. A comparative experimental approach to ecotoxicology in shallow-water and deep-sea holothurians suggests similar behavioural responses. Aquat. Toxicol. 191, 10–16 (2017).
Google Scholar
McClain, C. R. Seamounts: identity crisis or split personality?. J. Biogeogr. 34, 2001–2008 (2007).
Google Scholar
Rogers, A. D. The biology of seamounts: 25 years on. In Advances in Marine Biology Vol. 79 (ed. Sheppard, C.) 137–224 (Academic Press, 2018).
Durden, J. M., Bett, B. J., Jones, D. O. B., Huvenne, V. A. I. & Ruhl, H. A. Abyssal hills–hidden source of increased habitat heterogeneity, benthic megafaunal biomass and diversity in the deep sea. Prog. Oceanogr. 137, 209–218 (2015).
Google Scholar
Durden, J. M. et al. Megafaunal ecology of the western Clarion Clipperton Zone. Front. Mar. Sci. 8, 671062 (2021).
Google Scholar
Jones, D. O. B. et al. Environment, ecology, and potential effectiveness of an area protected from deep-sea mining (Clarion Clipperton Zone, abyssal Pacific). Prog. Oceanogr. 197, 102653 (2021).
Google Scholar
Lutz, M. J., Caldeira, K., Dunbar, R. B. & Behrenfeld, M. J. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. J. Geophys. Res. Oceans 112, C10011 (2007).
Google Scholar
Volz, J. B. et al. Natural spatial variability of depositional conditions, biogeochemical processes and element fluxes in sediments of the eastern Clarion-Clipperton Zone. Pacific Ocean. Deep Sea Res. 140, 159–172 (2018).
Google Scholar
Smith, C. R., De Leo, F. C., Bernardino, A. F., Sweetman, A. K. & Martínez Arbizu, P. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol. Evol. 23, 518–528 (2008).
Google Scholar
Ramirez-Llodra, E. et al. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences 7, 2851–2899 (2010).
Google Scholar
Kharbush, J. J. et al. Particulate organic carbon deconstructed: Molecular and chemical composition of particulate organic carbon in the ocean. Front. Mar. Sci. 7, 518 (2020).
Google Scholar
Smith, C. R. et al. Latitudinal variations in benthic processes in the abyssal equatorial Pacific: Control by biogenic particle flux. Deep Sea Res. 44, 2295–2317 (1997).
Google Scholar
Kuhn, T. & Rühlemann, C. Exploration of polymetallic nodules and resource assessment: A case study from the German contract area in the Clarion-Clipperton Zone of the tropical Northeast Pacific. Minerals 11, 618 (2021).
Google Scholar
Christodoulou, M. et al. Unexpected high abyssal ophiuroid diversity in polymetallic nodule fields of the northeast Pacific Ocean and implications for conservation. Biogeosciences 17, 1845–1876 (2020).
Google Scholar
Valavi, R., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. Modelling species presence-only data with random forests. Ecography 44, 1731–1742 (2021).
Google Scholar
Wiedicke-Hombach, M. & Shipboard Scientific Party. Campaign “MANGAN 2008” with R/V Kilo Moana. (2009).
Hijmans, R. J. raster: Geographic Data Analysis and Modeling. (2017).
Kaufman, L. & Rousseeuw, P. J. Clustering Large Applications (Program CLARA). in Finding Groups in Data 126–163 (Wiley, 1990). https://doi.org/10.1002/9780470316801.ch3.
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. cluster. (2019).
Langenkämper, D., Zurowietz, M., Schoening, T. & Nattkemper, T. W. BIIGLE 2.0: Browsing and annotating large marine image collections. Front. Mar. Sci. 4, 83 (2017).
Google Scholar
Simon-Lledó, E. et al. Preliminary observations of the abyssal megafauna of Kiribati. Front. Mar. Sci. 6, 605 (2019).
Google Scholar
Amon, D. J. et al. Megafauna of the UKSRL exploration contract area and eastern Clarion-Clipperton Zone in the Pacific Ocean: Annelida, Arthropoda, Bryozoa, Chordata, Ctenophora, Mollusca. Biodivers. Data J. 5, e14598 (2017).
Google Scholar
Molodtsova, T. N. & Opresko, D. M. Black corals (Anthozoa: Antipatharia) of the Clarion-Clipperton Fracture Zone. Mar. Biodivers. 47, 349–365 (2017).
Google Scholar
Kersken, D., Janussen, D. & MartínezArbizu, P. Deep-sea glass sponges (Hexactinellida) from polymetallic nodule fields in the Clarion-Clipperton Fracture Zone (CCFZ), northeastern Pacific: Part II—Hexasterophora. Mar. Biodivers. 49, 947–987 (2019).
Google Scholar
Horton, T. et al. Recommendations for the standardisation of open taxonomic nomenclature for image-based identifications. Front. Mar. Sci. 8, 620702 (2021).
Google Scholar
Hughes, J. A. & Gooday, A. J. Associations between living benthic foraminifera and dead tests of Syringammina fragilissima (Xenophyophorea) in the Darwin Mounds region (NE Atlantic). Deep Sea Res. 51, 1741–1758 (2004).
Google Scholar
Liaw, A. & Wiener, M. Classification and regression by random Forest. R News 2, 18–22 (2002).
Oksanen, J. et al. vegan: Community Ecology Package. (2019).
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).
Wickham, H. Reshaping data with the reshape package. J. Stat. Softw. 21, 1–20 (2007).
Google Scholar
Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40, 1–29 (2011).
Garnier, S. viridisLite: Default Color Maps from ‘matplotlib’ (Lite Version). (2018).
Rabosky, A. R. D. et al. Coral snakes predict the evolution of mimicry across New World snakes. Nat. Commun. 7, 1–9 (2016).
Smith, M. R. Ternary: An R package for creating ternary plots. Zenodo https://doi.org/10.5281/zenodo.1068996 (2017).
Source: Ecology - nature.com