in

Asynchronous recovery of predators and prey conditions resilience to drought in a neotropical ecosystem

  • Dai, A. Drought under global warming: A review. Vo Lu Me 21, 2 (2011).

    Google Scholar 

  • Sirdaş, S. & Sen, Z. Spatio-temporal drought analysis in the Trakya region Turkey. Hydrol. Sci. J. 48, 809–820 (2003).

    Article 

    Google Scholar 

  • Marengo, J. A. et al. The drought of Amazonia in 2005. J. Clim. 21, 495–516 (2008).

    ADS 
    Article 

    Google Scholar 

  • Zhang, L., Jiao, W., Zhang, H., Huang, C. & Tong, Q. Studying drought phenomena in the Continental United States in 2011 and 2012 using various drought indices. Remote Sens. Environ. 190, 96–106 (2017).

    ADS 
    Article 

    Google Scholar 

  • Humphries, P. & Baldwin, D. S. Drought and aquatic ecosystems: An introduction: Drought and aquatic ecosystems. Freshw. Biol. 48, 1141–1146 (2003).

    Article 

    Google Scholar 

  • Lake, P. S. Ecological effects of perturbation by drought in flowing waters: Effects of drought in streams. Freshw. Biol. 48, 1161–1172 (2003).

    Article 

    Google Scholar 

  • Wang, W., Peng, C., Kneeshaw, D. D., Larocque, G. R. & Luo, Z. Drought-induced tree mortality: Ecological consequences, causes, and modeling. Environ. Rev. 20, 109–121 (2012).

    Article 

    Google Scholar 

  • Rolls, R. J., Leigh, C. & Sheldon, F. Mechanistic effects of low-flow hydrology on riverine ecosystems: Ecological principles and consequences of alteration. Freshw. Sci. 31, 1163–1186 (2012).

    Article 

    Google Scholar 

  • Trzcinski, M. K., Srivastava, D. S., Corbara, B. & De, O. The effects of food web structure on ecosystem function exceeds those of precipitation. J. Anim. Ecol. 14, 2 (2016).

    Google Scholar 

  • Díaz-Paniagua, C. & Aragonés, D. Permanent and temporary ponds in Doñana National Park (SW Spain) are threatened by desiccation. Limnetica 34, 407–424 (2015).

    Google Scholar 

  • Downing, J. A. et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51, 2388–2397 (2006).

    ADS 
    Article 

    Google Scholar 

  • Bartout, P. & Touchart, L. A New Approach to Inventorying Bodies of Water, from Local to Global Scale (Gesellschaft für Erdkunde zu, 2015).

    Google Scholar 

  • Williams, P. et al. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol. Conserv. 115, 329–341 (2004).

    Article 

    Google Scholar 

  • Biggs, J., von Fumetti, S. & Kelly-Quinn, M. The importance of small waterbodies for biodiversity and ecosystem services: Implications for policy makers. Hydrobiologia 793, 3–39 (2017).

    Article 

    Google Scholar 

  • Bonhomme, C. et al. In situ resistance, not immigration, supports invertebrate community resilience to drought intensification in a Neotropical ecosystem. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13392 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Dewson, Z. S., James, A. B. W. & Death, R. G. Invertebrate responses to short-term water abstraction in small New Zealand streams. Freshw. Biol. 52, 357–369 (2007).

    CAS 
    Article 

    Google Scholar 

  • Dézerald, O., Céréghino, R., Corbara, B., Dejean, A. & Leroy, C. Functional trait responses of aquatic macroinvertebrates to simulated drought in a Neotropical bromeliad ecosystem. Freshw. Biol. 60, 1917–1929 (2015).

    Article 

    Google Scholar 

  • Wang, Y., Yu, S. & Wang, J. Biomass-dependent susceptibility to drought in experimental grassland communities. Ecol. Lett. 10, 401–410 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Pallarés, S., Velasco, J., Millán, A., Bilton, D. T. & Arribas, P. Aquatic insects dealing with dehydration: Do desiccation resistance traits differ in species with contrasting habitat preferences?. PeerJ 4, e2382 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Céréghino, R. et al. Desiccation resistance traits predict freshwater invertebrate survival and community response to drought scenarios in a Neotropical ecosystem. Ecol. Indic. 119, 106839 (2020).

    Article 

    Google Scholar 

  • Atkinson, C. L., Julian, J. P. & Vaughn, C. C. Species and function lost: Role of drought in structuring stream communities. Biol. Conserv. 176, 30–38 (2014).

    Article 

    Google Scholar 

  • Bogan, M. T., Boersma, K. S. & Lytle, D. A. Resistance and resilience of invertebrate communities to seasonal and supraseasonal drought in arid-land headwater streams. Freshw. Biol. 60, 2547–2558 (2015).

    Article 

    Google Scholar 

  • Srivastava, D. S. et al. Ecological response to altered rainfall differs across the Neotropics. Ecology 101, 15 (2020).

    Article 

    Google Scholar 

  • Amundrud, S. L. & Srivastava, D. S. Trophic interactions determine the effects of drought on an aquatic ecosystem. Ecology 97, 1475–1483 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Luo, Y., Keenan, T. F. & Smith, M. Predictability of the terrestrial carbon cycle. Glob. Change Biol. 21, 1737–1751 (2014).

    ADS 
    Article 

    Google Scholar 

  • Givnish, T. J. et al. Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Mol. Phylogenet. Evol. 71, 55–78 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Brouard, O. et al. Understorey environments influence functional diversity in tank-bromeliad ecosystems: Functional diversity in bromeliad ecosystems. Freshw. Biol. 57, 815–823 (2012).

    Article 

    Google Scholar 

  • Petermann, J. S. et al. Dominant predators mediate the impact of habitat size on trophic structure in bromeliad invertebrate communities. Ecology 96, 428–439 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Romero, G. Q., Piccoli, G. C. O., de Omena, P. M. & Gonçalves-Souza, T. Food web structure shaped by habitat size and climate across a latitudinal gradient. Ecology 97, 2705–2715 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Srivastava, D. S. & Bell, T. Reducing horizontal and vertical diversity in a foodweb triggers extinctions and impacts functions. Ecol. Lett. 12, 1016–1028 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Carrias, J.-F. et al. Resource availability drives bacterial succession during leaf-litter decomposition in a bromeliad ecosystem. FEMS Microbiol. Ecol. 96, 45 (2020).

    Article 
    CAS 

    Google Scholar 

  • Romero, G. Q. et al. Extreme rainfall events alter the trophic structure in bromeliad tanks across the Neotropics. Nat. Commun. 11, 3215 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hairston, N. G. & Hairston, N. G. Cause-effect relationships in energy flow, trophic structure, and interspecific interactions. Am. Nat. 142, 379–411 (1993).

    Article 

    Google Scholar 

  • Dézerald, O. et al. Environmental drivers of invertebrate population dynamics in neotropical tank bromeliads. Freshw. Biol. 62, 229–242 (2017).

    Article 

    Google Scholar 

  • Dézerald, O. et al. Tank bromeliads sustain high secondary production in neotropical forests. Aquat. Sci. 80, 14 (2018).

    Article 

    Google Scholar 

  • Holt, R. D. & Hoopes, M. F. Food web dynamics in a metacommunity context: modules and beyond. In Metacommunities: Spatial Dynamics and Ecological Communities 68–83 (University of Chicago Press, 2005).

    Google Scholar 

  • Srivastava, D. S., Trzcinski, M. K., Richardson, B. A. & Gilbert, B. Why are predators more sensitive to habitat size than their prey? Insights from bromeliad insect food webs. Am. Nat. 172, 761–771 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Amundrud, S. L. et al. Drought alters the trophic role of an opportunistic generalist in an aquatic ecosystem. Oecologia 189, 733–744 (2019).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Adler, P. B. & Drake, J. M. Environmental variation, stochastic extinction, and competitive coexistence. Am. Nat. 172, E186–E195 (2008).

    Article 

    Google Scholar 

  • Anisiu, M.-C. Lotka Volterra and their model. Didact. Math. 32, 9–17 (2014).

    Google Scholar 

  • Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587 (2018).

    ADS 
    Article 

    Google Scholar 

  • Bengtsson, J. Disturbance and resilience in soil animal communities. Eur. J. Soil Biol. 38, 119–125 (2002).

    Article 

    Google Scholar 

  • Parkyn, S. M. & Collier, K. J. Interaction of press and pulse disturbance on crayfish populations: Flood impacts in pasture and forest streams. Hydrobiologia 527, 113–124 (2004).

    Article 

    Google Scholar 

  • Rowe, L. & Richardson, J. S. Community responses to experimental food depletion: Resource tracking by stream invertebrates. Oecologia 129, 473–480 (2001).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • McPeek, M. A. The growth/predation risk trade-off: So what is the mechanism?. Am. Nat. 163, E88–E111 (2004).

    PubMed 
    Article 

    Google Scholar 

  • Benbow, M. E. et al. Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecol. Monogr. 89, 2 (2019).

    Article 

    Google Scholar 

  • Powers, J. S. et al. Decomposition in tropical forests: A pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. J. Ecol. 97, 801–811 (2009).

    CAS 
    Article 

    Google Scholar 

  • Pires, A. P. F. et al. Interactive effects of climate change and biodiversity loss on ecosystem functioning. Ecology 99, 1203–1213 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Rodríguez Pérez, H. et al. Simulated drought regimes reveal community resilience and hydrological thresholds for altered decomposition. Oecologia 187, 267–279 (2018).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Brennan, K. E. C., Christie, F. J. & York, A. Global climate change and litter decomposition: More frequent fire slows decomposition and increases the functional importance of invertebrates. Glob. Change Biol. 15, 2958–2971 (2009).

    ADS 
    Article 

    Google Scholar 

  • Marino, N. A. C. et al. Rainfall and hydrological stability alter the impact of top predators on food web structure and function. Glob. Change Biol. 23, 673–685 (2017).

    ADS 
    Article 

    Google Scholar 

  • Hättenschwiler, S., Coq, S., Barantal, S. & Handa, I. T. Leaf traits and decomposition in tropical rainforests: Revisiting some commonly held views and towards a new hypothesis. New Phytol. 189, 950–965 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Céréghino, R. et al. Constraints on the functional trait space of aquatic invertebrates in bromeliads. Funct. Ecol. 32, 2435–2447 (2018).

    Article 

    Google Scholar 

  • Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Changes in global DNA methylation under climatic stress in two related grasses suggest a possible role of epigenetics in the ecological success of polyploids

    Terrestrial and marine influence on atmospheric bacterial diversity over the north Atlantic and Pacific Oceans