Dugatkin, L. A. Principles of Animal Behavior 4th edn. (University of Chicago Press, 2018).
Lucas, M. C. & Baras, E. Migration of Freshwater Fishes (Blackwell Science, 2001).
Google Scholar
Northcote, T. G. Potamodromy in Sahnonidae—Living and moving in the fast lane. North Am. J. Fish. Manage. 17, 1029–1045 (1997).
Google Scholar
Brönmark, C. et al. There and back again: Migration in freshwater fishes. Can. J. Zool. 92, 467–479 (2013).
Google Scholar
L’Abée-Lund, J. H. & Vøllestad, L. A. Feeding migration of roach, Rutilus rutilus (L.), in Lake Arungen, Norway. J. Fish Biol. 30, 349–355 (1987).
Google Scholar
Mouchlianitis, F. A. et al. Does fragmented river connectivity alter the reproductive behavior of the potamodromous fish Alburnus vistonicus? Hydrobiologia 848, 4029 (2021).
Google Scholar
Brönmark, C., Skov, C., Brodersen, J., Nilsson, P. A. & Hansson, L.-A. Seasonal migration determined by a trade-off between predator avoidance and growth. PLoS ONE 3, 2–7 (2008).
Google Scholar
Brodersen, J., Hansen, J. H. & Skov, C. Partial nomadism in large-bodied bream (Abramis brama). Ecol. Freshw. Fish 28, 650–660 (2019).
Google Scholar
Magnuson, J. J., Crowder, L. B. & Medvick, P. A. Temperature as an ecological resource. Integr. Compar. Biol. 19, 331 (1979).
Beamish, F. W. H. Swimming capacity. Fish Physiol. 7, 101 (1978).
Google Scholar
Benitez, J. P. & Ovidio, M. The influence of environmental factors on the upstream movements of rheophilic cyprinids according to their position in a river basin. Ecol. Freshw. Fish 27, 660–671 (2018).
Google Scholar
Lucas, M. C. & Batley, E. Seasonal movements and behaviour of adult Barbel Barbus barbus, a riverine cyprinid fish: Implications for river management. J. Appl. Ecol. 33, 1345–1358 (1996).
Google Scholar
Benjamin, J. R., Vidergar, D. T. & Dunham, J. B. Thermal heterogeneity, migration, and consequences for spawning potential of female bull trout in a river–reservoir system. Ecol. Evol. 10, 4128 (2020).
Google Scholar
Fernando, C. H. & Holčík, J. Fish in reservoirs. Int. Revue der gesamten Hydrobiol. Hydrogr. 76, 149–167 (1991).
Google Scholar
Kubecka, J. Succession of fish communities in reservoirs of Central and Eastern Europe. Compar. Reserv. Limnol. Water Qual. Manage. https://doi.org/10.1007/978-94-017-1096-1_11 (1993).
Google Scholar
Pfauserová, N., Slavík, O., Horký, P., Turek, J. & Randák, T. Spatial distribution of native fish species in tributaries is altered by the dispersal of non-native species from reservoirs. Sci. Total Environ. 755, 143108 (2021).
Google Scholar
Hladík, M. & Kubečka, J. Fish migration between a temperate reservoir and its main tributary. Hydrobiologia 504, 251–266 (2003).
Google Scholar
Reyes-Gavilan, F. G., Garrido, R., Nicieza, A. G., Toledo, M. M. & Brana, F. Fish community variation along physical gradients in short streams of northern Spain and the disruptive effect of dams. Hydrobiologia 321, 155–163 (1996).
Google Scholar
Falke, J. A. & Gido, K. B. Spatial effects of reservoirs on fish assemblages in great plains streams in Kansas, USA. River Res. Appl. 22, 55–68 (2006).
Google Scholar
Vitule, J. R. S., Skóra, F. & Abilhoa, V. Homogenization of freshwater fish faunas after the elimination of a natural barrier by a dam in Neotropics. Divers. Distrib. 18, 111–120 (2012).
Google Scholar
Van der Zanden, M. J., Lapointe, N. W. R. & Marchetti, M. P. Non-indigenous fishes and their role in freshwater fish imperilment. In Conservation of Freshwater Fishes (eds Closs, G. P. et al.) 238–269 (Cambridge University Press, 2016).
Google Scholar
Moyle, P. B. & Light, T. Biological invasions of fresh water: Empirical rules and assembly theory. Biol. Conserv. 78, 149–161 (1996).
Google Scholar
Martinez, P. J., Chart, T. E., Trammell, M. A., Wullschleger, J. G. & Bergersen, E. P. Fish species composition before and after construction of a main stem reservoir on the White River, Colorado. Environ. Biol. Fish. 40, 227–239 (1994).
Google Scholar
Carey, M. P., Sanderson, B. L., Barnas, K. A. & Olden, J. D. Native invaders—Challenges for science, management, policy, and society. Front. Ecol. Environ. 10, 373–381 (2012).
Google Scholar
Cucherousset, J. & Olden, J. D. Ecological impacts of non-native freshwater fishes. Fisheries (Bethesda) 36, 215–230 (2011).
Google Scholar
Havel, J. E., Lee, C. E. & Vander Zanden, M. J. Do reservoirs facilitate invasions into landscapes? Bioscience 55, 518 (2005).
Google Scholar
Murphy, C. A., Arismendi, I., Taylor, G. A. & Johnson, S. L. Evidence for lasting alterations to aquatic food webs with short-duration reservoir draining. PLoS ONE 14, 1–12 (2019).
Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).
Google Scholar
Pfauserová, N., Slavík, O., Horký, P., Kolářová, J. & Randák, T. Migration of non-native predator asp (Leuciscus aspius) from a reservoir poses a potential threat to native species in tributaries. Water (Basel) 11, 1306 (2019).
Hladík, M. & Kubečka, J. The effect of water level fluctuation on tributary spawning migration of reservoir fish. Ecohydrol. Hydrobiol. 4, 449–457 (2004).
Morán-López, R. & Uceda Tolosa, O. Relative leaping abilities of native versus invasive cyprinids as criteria for selective barrier design. Biol. Invas. 19, 1243–1253 (2017).
Google Scholar
Winter, J. D. Underwater biotelemetry. In Fisheries Techniques (eds Nielson, L. A. & Johnson, D. L.) 371–395 (American Fisheries Society, 1983).
Vostradovský, J. & Novák, M. Some opinions in regard to the Lipno Valley reservoir in 1958. Anim. Husb. 4, 877–888 (1959).
Balon, E. K. Reproductive guilds of fishes: A proposal and definition. J. Fish. Res. Board Can. 32, 821–864 (1975).
Google Scholar
Schiemer, F. & Waidbacher, H. Strategies for conservation of a Danubian fish fauna. River Conserv. Manage. https://doi.org/10.1016/0006-3207(92)90983-t (1992).
Google Scholar
Molls, F. New insights into the migration and habitat use by bream and white bream in the floodplain of the River Rhine. J. Fish Biol. 55, 1187–1200 (1999).
Google Scholar
Kafemann, R., Adlerstein, S. & Neukamm, R. Variation in otolith strontium and calcium ratios as an indicator of life-history strategies of freshwater fish species within a brackish water system. Fish. Res. 46, 313 (2000).
Google Scholar
le Pichon, C. et al. Summer use of the tidal freshwaters of the River Seine by three estuarine fish: Coupling telemetry and GIS spatial analysis. Estuar. Coast. Shelf Sci. 196, 83 (2017).
Google Scholar
Jurajda, P., Roche, K., Halačka, K., Mrkvová, M. & Zukal, J. Winter activity of common bream (Abramis brama L.) in a European reservoir. Fish. Manage. Ecol. 25, 163–171 (2018).
Google Scholar
Lyons, J. & Lucas, M. C. The combined use of acoustic tracking and echosounding to investigate the movement and distribution of common bream (Abramis brama) in the River Trent, England. Hydrobiologia 483, 265–273 (2002).
Google Scholar
Gardner, C. J., Deeming, D. C. & Eady, P. E. Seasonal water level manipulation for flood risk management influences home-range size of common bream Abramis brama L. in a lowland river. River Res. Appl. 31, 165–172 (2015).
Google Scholar
Winter, E. R., Hindes, A. M., Lane, S. & Britton, J. R. Movements of common bream Abramis brama in a highly connected, lowland wetland reveal sub-populations with diverse migration strategies. Freshw. Biol. 66, 1410 (2021).
Google Scholar
Gardner, C. J., Deeming, D. C. & Eady, P. E. Seasonal movements with shifts in lateral and longitudinal habitat use by common bream, Abramis brama, in a heavily modified lowland river. Fish. Manage. Ecol. 20, 315–325 (2013).
Google Scholar
Skov, C. et al. Sizing up your enemy: Individual predation vulnerability predicts migratory probability. Proc. R. Soc. B Biol. Sci. 278, 1414–1418 (2011).
Google Scholar
Cala, P. On the ecology of ide Leuciscus idus (L.) in the River Kävlingean, South Sweden. Rep. Inst. Freshw. Res. Drottningholm 50, 45–99 (1970).
Winter, H. V. & Fredrich, F. Migratory behaviour of ide: A comparison between the lowland rivers Elbe, Germany, and Vecht, The Netherlands. J. Fish Biol. 63, 871–880 (2003).
Google Scholar
de Leeuw, J. J. & Winter, H. V. Migration of rheophilic fish in the large lowland rivers Meuse and Rhine, the Netherlands. Fish. Manage. Ecol. 15, 409–415 (2008).
Google Scholar
Kulíšková, P., Horký, P., Slavík, O. & Jones, J. I. Factors influencing movement behaviour and home range size in ide Leuciscus idus. J. Fish Biol. 74, 1269–1279 (2009).
Google Scholar
Rohtla, M. et al. Review and meta-analysis of the environmental biology and potential invasiveness of a poorly-studied cyprinid, the Ide Leuciscus idus. Rev. Fish. Sci. Aquac. 29, 1–37 (2020).
Fredrich, F. Long-term investigations of migratory behaviour of asp (Aspius aspius L.) in the middle part of the Elbe River, Germany. J. Appl. Ichthyol. 19, 294–302 (2003).
Google Scholar
Šmejkal, M. et al. Climbing up the ladder: Male reproductive behaviour changes with age in a long-lived fish. Behav. Ecol. Sociobiol. https://doi.org/10.1007/s00265-020-02961-7 (2021).
Google Scholar
Šmejkal, M. et al. Seasonal and daily protandry in a cyprinid fish. Sci. Rep. 7, 1–9 (2017).
Google Scholar
Merciai, R. et al. First record of the asp Leuciscus aspius introduced into the Iberian Peninsula. Limnetica 37, 341–344 (2018).
Horký, P. & Slavík, O. Diel and seasonal rhythms of asp Leuciscus aspius (L.) in a riverine environment. Ethol. Ecol. Evol. 29, 449–459 (2017).
Google Scholar
Allouche, S., Thévenet, A. & Gaudin, P. Habitat use by chub (Leuciscus cephalus L. 1766) in a large river, the French Upper Rhone, as determined by radiotelemetry. Arch. Hydrobiol. 145, 219–236 (1999).
Google Scholar
Horký, P., Slavík, O., Bartoš, L., Kolářová, J. & Randák, T. Behavioural pattern in cyprinid fish below a weir as detected by radio telemetry. J. Appl. Ichthyol. 23, 679 (2007).
Google Scholar
Sandlund, O. T., Museth, J. & Øistad, S. Migration, growth patterns, and diet of pike (Esox lucius) in a river reservoir and its inflowing river. Fish. Res. 173, 53–60 (2016).
Google Scholar
Koed, A., Balleby, K., Mejlhede, P. & Aarestrup, K. Annual movement of adult pike (Esox lucius L.) in a lowland river. Ecol. Freshw. Fish 15, 191. https://doi.org/10.1111/j.1600-0633.2006.00136.x (2006).
Google Scholar
Kobler, A., Klefoth, T. & Arlinghaus, R. Site fidelity and seasonal changes in activity centre size of female pike Esox lucius in a small lake. J. Fish Biol. https://doi.org/10.1111/j.1095-8649.2008.01952.x (2008).
Google Scholar
Kobler, A., Klefoth, T., Mehner, T. & Arlinghaus, R. Coexistence of behavioural types in an aquatic top predator: A response to resource limitation? Oecologia. https://doi.org/10.1007/s00442-009-1415-9 (2009).
Google Scholar
Boeuf, G. & Falcón, J. Photoperiod and growth in fish. Vie et Milieu 51, 247–266 (2001).
Pfauserová, N., Slavík, O. & Horký, P. DATA: An increase in reservoir water levels signals non-native fish species to migrate into tributaries. Mendeley Data 1 (2021).
Stroup, W. W. Generalized Linear Mixed Models: Modern Concepts, Methods and Applications (CRC Press, 2012).
Google Scholar
Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models (Chapman & Hall/CRC, 1990).
Google Scholar
Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2017).
Google Scholar
Eubank, R. L. Approximate regression models and splines. Commun. Stat. Theory Methods 13, 433–484 (1984).
Google Scholar
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).
McCulloch, C. E., Searle, S. R. & Neuhaus, J. M. Generalized, Linear, and Mixed Models (Wiley, 2008).
Google Scholar
Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211 (1984).
Google Scholar
Maitland, P. S. & Campbell, R. N. Freshwater Fishes of the British Isles (HarperCollins Publishers, 1992).
Kottelat, M. & Freyhof, J. J. Handbook of European freshwater fishes. Copeia. https://doi.org/10.1643/OT-08-098a.1 (2007).
Google Scholar
Lucas, M. C. et al. Spatio-temporal variations in the distribution and abundance of fish in the Yorkshire Ouse system. Sci. Total Environ. 210–211, 437 (1998).
Google Scholar
Lucas, M. C. The influence of environmental factors on movements of lowland-river fish in the Yorkshire Ouse system. Sci. Total Environ. 251–252, 223 (2000).
Google Scholar
Mehner, T., Diekmann, M., Brämick, U. & Lemcke, R. Composition of fish communities in German lakes as related to lake morphology, trophic state, shore structure and human-use intensity. Freshw. Biol. 50, 70–85 (2005).
Google Scholar
Johnson, P. T. J., Olden, J. D. & van der Zanden, M. J. Dam invaders: Impoundments facilitate biological invasions into freshwaters. Front. Ecol. Environ. 6, 357–363 (2008).
Google Scholar
Liew, J. H., Tan, H. H. & Yeo, D. C. J. Dammed rivers: Impoundments facilitate fish invasions. Freshw. Biol. 61, 1421–1429 (2016).
Google Scholar
Brito, M. F. G., Daga, V. S. & Vitule, J. R. S. Fisheries and biotic homogenization of freshwater fish in the Brazilian semiarid region. Hydrobiologia 847, 3877–3895 (2020).
Google Scholar
Kärgenberg, E. et al. Migration patterns of a potamodromous piscivore, asp (Leuciscus aspius), in a river–lake system. J. Fish Biol. 97, 996–1008 (2020).
Google Scholar
Poulet, N., Beaulaton, L. & Dembski, S. Time trends in fish populations in metropolitan France: Insights from national monitoring data. J. Fish Biol. 79, 1436–1452 (2011).
Google Scholar
Elvira, B. Identification of Non-native freshwater Fishes Established in Europe and Assessment of Their Potential Threats to the Biological Diversity. Convention on the Conservation of European Wildlife and Natural Habitats, 35 (2001).
Global Invasive Species Database (GISD). Species Profile Leuciscus idus (2021). http://www.iucngisd.org/gisd/species.php?sc=613. Accessed 15 Sept 2021.
Nico, L., Fuller, P. & Neilson, M. Leuciscus idus (Linnaeus, 1758): U.S. Geological Survey, Nonindigenous Aquatic Species Database, Gainesville (2021). https://nas.er.usgs.gov/queries/factsheet.aspx?SpeciesID=557. Accessed 15 Sept 2021.
Ovidio, M. & Philippart, J. C. The impact of small physical obstacles on upstream movements of six species of fish: Synthesis of a 5-year telemetry study in the River Meuse basin. Hydrobiologia 483, 55–69 (2002).
Google Scholar
Hansen, J. H. et al. Ecological consequences of animal migration: Prey partial migration affects predator ecology and prey communities. Ecosystems 23, 292–306 (2020).
Google Scholar
Brodersen, J., Nilsson, P. A., Hansson, L.-A., Skov, C. & Brönmark, C. Condition-dependent individual decision-making determines cyprinid partial migration. Ecology 89, 1195–1200 (2008).
Google Scholar
Chapman, B. B. et al. To boldly go: Individual differences in boldness influence migratory tendency. Ecol. Lett. 14, 871–876 (2011).
Google Scholar
Harrison, P. M. et al. Personality-dependent spatial ecology occurs independently from dispersal in wild burbot (Lota lota). Behav. Ecol. 26, 483–492 (2015).
Google Scholar
Rehage, J. S., Cote, J. & Sih, A. The role of dispersal behaviour and personality in post-establishment spread. In Biological Invasions and Animal Behaviour (eds Weis, J. S. & Sol, D.) 96–116 (Cambridge University Press, 2016).
Google Scholar
Juette, T., Cucherousset, J. & Cote, J. Animal personality and the ecological impacts of freshwater non-native species. Curr. Zool. 60, 417–427 (2014).
Google Scholar
Sol, D. & Maspons, J. Life history, behaviour and invasion success. Biol. Invas. Anim. Behav. https://doi.org/10.1017/cbo9781139939492.006 (2016).
Google Scholar
Sol, D. & Weis, J. Highlights and insights from “biological invasions and animal behaviour”. Aquat. Invas. 14, 551–565 (2019).
Google Scholar
Source: Ecology - nature.com