Khamraev, Sh. R. & Bezborodov, Yu. G. Results of research on the reduction of physical evaporation of moisture from the cotton fields. Sci. World 2(33), 86–93 (2016).
Khan, A. U. et al. Production of organic fertilizers from rocket seed (Eruca sativa L.), chicken peat and Moringa oleifera leaves for growing linseed under water deficit stress. Sustainability 13(1), 1–19 (2021).
Google Scholar
Patil Shirish, S., Kelkar Tushar, S. & Bhalerao Satish, A. Mulching: A soil and water conservation practice. Res. J. Agric For. Sci. 1(3), 26–29 (2013).
Matkovic, A. et al. Mulching as a physical weed control method applicable in medicinal plants cultivations. J. Lekovite Sirovine 35, 37–51 (2015).
Google Scholar
Nawaz, A., Lal, R., Shrestha, R. K. & Farooq, M. Mulching affects soil properties and greenhouse gas emissions under long-term no-till and plough-till systems in alfisol of Central Ohio. Land Degrad. Dev. 28(2), 673–681 (2016).
Google Scholar
Brant, V. et al. Splash erosion in maize crops under conservation management in combination with Shallow Strip-tillage before Sowing. Soil Water Res. 12(2), 106–116 (2017).
Google Scholar
Kumar, R. et al. Effect of plant spacing and organic mulch on growth, yield and quality of natural sweetener plant Stevia and soil fertility in western Himalayas. Int. J. Plant Prod. 8(3), 311–334 (2014).
Google Scholar
Seleiman, M. F. & Kheir, A. M. S. Maize productivity, heavy metals uptake and their availability in contaminated clay and sandy alkaline soils as affected by inorganic and organic amendments. Chemosphere 204, 514–522 (2018).
Google Scholar
Seleiman, M. F. & Kheir, A. M. S. Saline soil properties, quality and productivity of wheat grown with bagasse ash and thiourea in different climatic zones. Chemosphere 193, 538–546 (2018).
Google Scholar
Chakraborty, D. et al. Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment. Agric. Water Manag. 95(12), 1323–1334 (2008).
Google Scholar
Ahmad, Z. I., Ansar, M., Iqbal, M. & Minhas, N. M. Effect of planting geometry and mulching on moisture conservation, weed control and wheat growth under rainfed conditions. Pak. J. Bot. 39(4), 1189–1195 (2007).
Teame, G. Effect of organic mulches and land preparation methods on soil moisture and sesame productivity. Afr. J. Agric. Res. 12(38), 2836–2843 (2017).
Google Scholar
Lehar, L., Wardiyati, T., Moch Dawam, M. & Suryanto, A. Influence of mulch and plant spacing on yield of Solanum tuberosum L. cv. Nadiya at medium altitude. Int. Food Res. J. 24(3), 1338–1344 (2017).
Google Scholar
Arash, K. The evaluation of water use efficiency in common bean (Phaseolus vulgaris L.) in irrigation condition and mulch. Sci. Agric. 2(3), 60–64 (2013).
Artyszak, A., Gozdowski, D. & Kucińska, K. The yield and technological quality of sugar beet roots cultivated in mulches. Plant Soil Environ. 60(10), 464–469 (2014).
Google Scholar
Brittaine, R. & Lutaladio, N. Jatropha: A Smallholder Bioenergy Crop. The Potential for Pro-poor Development Integrated Crop Management, Vol. 8 (IFAD/FAO, 2010). http://www.fao.org
Elbehri, A., Segerstedt, A. & Liu, P. Biofuels and the sustainability challenge: A global assessment of sustainability issues, trends and policies for biofuels and related feedstocks. Food and Agric. Organ. United Nations (FAO) xvi-174 (2013).
King, A. J. et al. Potential of Jatropha curcas as a source of renewable oil and animal feed. J. Exp. Bot. 60(10), 2897–2905 (2009).
Google Scholar
Raheman, H. 14 Jatropha. Handbook of Bioenergy Crop Plants, 315–345 (2012).
Ullah, F., Bano, A. & Nosheen, A. Sustainable measures for biodiesel. Effects 36(23), 2621–2628 (2014).
Google Scholar
Irshad, M. et al. Evaluation of Jatropha curcas L. leaves mulching on wheat growth and biochemical attributes under water stress. BMC Plant Biol. 21(1), 1–12 (2021).
Google Scholar
Dieye, T. et al. The effect of Jatropha curcas L. leaf litter decomposition on soil carbon and nitrogen status and bacterial community structure (Senegal). J. Soil Sci. Environ Manag. 7(3), 32–44 (2016).
Google Scholar
Kafi, M. & Salehi, M. Kochia scoparia as a model plant to explore the impact of water deficit on halophytic communities. Pak. J. Bot. 44, 257–262 (2012).
Yang, Y. M., Liu, X. J., Li, W. Q. & Li, C. Z. Effect of different mulch materials on winter wheat production in desalinized soil in Heilonggang region of North China. J. Zhejiang Univ. Sci. B 7(11), 858–867 (2006).
Google Scholar
Xie, Z. K., Wang, Y. J. & Li, F. M. Effect of plastic mulching on soil water use and spring wheat yield in arid region of northwest China. Agric. Water Manag. 75(1), 71–83 (2005).
Google Scholar
Khan, R. H., Anwar-ul-Haq, K. & Sajjad, M. R. Effect of different types of mulches on grain yield and yield components of wheat (Triticum aestivum) under rainfed condition. J. Biol. Agric. Healthc. 4(12), 85–91 (2014).
Weidhuner, A., Afshar, R. K., Luo, Y., Battaglia, M. & Sadeghpour, A. Particle size affects nitrogen and carbon estimate of a wheat cover crop. Agron. J. 111(6), 3398–3402 (2019).
Google Scholar
Ding, Z. et al. The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. Sci. Rep. 10(1), 1–13 (2020).
Google Scholar
Rummana, S., Amin, A. K. M. R., Islam, M. S. & Faruk, G. M. Effect of irrigation and mulch materials on growth and yield of wheat. Bang. Agron. J. 21(1), 71–76 (2018).
Google Scholar
Richard, L. A. Diagnosis and improvement of saline and alkaline soils. Handbook No. 60 (US Depart. Agric., 1954).
McLean, E. O. Soil pH and lime requirement. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, Vol. 9, 199–224 (1983).
Walkley, A. A critical examination of a rapid method for determining organic carbon in soils—Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 63, 251–264 (1947).
Google Scholar
Singleton, V. L., Orthofer, R. & Lamuela-Raventos, R. M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol. 299, 152–178 (1999).
Google Scholar
Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).
Google Scholar
Bremner, J. M. & Mulvaney, C. S. Nitrogen-total. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties (eds Page, A. L. et al.) 595–624 (Soil Sci. Society America, 1982).
Steel, R. G. D., Torrie, J. H. & Dickey, D. A. Principles and Procedures of Statistics: A Biometrical Approach 3rd edn, 246 (McGraw-Hill, 1997).
Brady, N. C. & Weil, R. R. Soil colloids: Seat of soil chemical and physical acidity. Nat. Prop. Soils 5(13), 311–358 (2008).
Scharenbroch, B. C. & Lloyd, J. E. Particulate organic matter and soil nitrogen availability in urban landscapes. Arboricul. Urb. For. 32(4), 180–191 (2006).
Google Scholar
Bhadha, J. H., Capasso, J. M., Khatiwada, R., Swanson, S. & LaBorde, C. Raising soil organic matter content to improve water holding capacity. UF/IFAS 1–5 (2017).
Chalker-Scott, L. Impact of mulches on landscape plants and the environment—A review. J. Environ. Hortic. 25(4), 239–249 (2007).
Google Scholar
Liu, Z., Fu, B., Zheng, X. & Liu, G. Plant biomass, soil water content and soil N:P ratio regulating soil microbial functional diversity in a temperate steppe: A regional scale study. Soil Biol. Biochem. 42(3), 445–450 (2010).
Google Scholar
Bai, S. H., Blumfield, T. J. & Reverchon, F. The impact of mulch type on soil organic carbon and nitrogen pools in a sloping site. Biol. Fertil. Soils 50(1), 37–44 (2014).
Google Scholar
Yang, H. et al. The combined effects of maize straw mulch and no-tillage on grain yield and water and nitrogen use efficiency of dry-land winter wheat (Triticum aestivum L.). Soil Tillage Res. 197, 104485 (2020).
Google Scholar
Li, X. J. et al. Abscisic acid pretreatment enhances salt tolerance of rice seedlings: Proteomic evidence. Biochim. Biophys. Acta (BBA) Proteins Proteomics 1804(4), 929–940 (2010).
Google Scholar
Fang, S., Xie, B., Liu, D. & Liu, J. Effects of mulching materials on nitrogen mineralization, nitrogen availability and poplar growth on degraded agricultural soil. New For. 41(2), 147–162 (2011).
Google Scholar
Houghton, J. T. Climate Change 2001: The Scientific Basis 419–470 (2001).
Johnson, D. et al. Plant community composition affects the biomass, activity and diversity of microorganisms in limestone grassland soil. Eur. J. Soil Sci. 54(4), 671–678 (2003).
Google Scholar
Johnson, M. J., Lee, K. Y. & Scow, K. M. DNA finger printing reveals links among agricultural crops, soil properties, and the composition of soil microbial communities. Geoderma 114, 279–303 (2003).
Google Scholar
Nielsen, N. M., Winding, A. & Binnerup, S. Microorganisms as Indicators of Soil Health 15–16 (Ministry of the Environment, National Environ. Res. Inst., 2002).
Wilkinson, S. C. et al. PLFA profiles of microbial communities in decomposing conifer litters subject to moisture stress. Soil Biol. Biochem. 34(2), 189–200 (2002).
Google Scholar
Drenovsky, R. E., Vo, D., Graham, K. J. & Scow, K. M. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb. Ecol. 48(3), 424–430 (2004).
Google Scholar
Liu, Y. Y., Yao, H. Y. & Huang, C. Y. Influence of soil moisture regime on microbial community diversity and activity in a paddy soil. Acta Pedol. Sin. 43, 828–834 (2006).
Jensen, K. D., Beier, C., Michelsen, A. & Emmett, B. A. Effects of experimental drought on microbial processes in two temperate heathlands at contrasting water conditions. Appl. Soil Ecol. 24(2), 165–176 (2003).
Google Scholar
Stoklosa, A., Hura, T., Stupnicka-Rodzynkiewicz, E., Dabkowska, T. & Lepiarczyk, A. The influence of plant mulches on the content of phenolic compounds in soil and primary weed infestation of maize. Acta. Agron. Bot. 61(2), 205–219 (2008).
Ohno, T. Oxidation of phenolic acid derivatives by soil and its relevance to allelopathic activity. J. Environ. Qual. 30(5), 1631–1635 (2001).
Google Scholar
Farooq, S., Shahid, M., Khan, M. B., Hussain, M. & Farooq, M. Improving the productivity of bread wheat by good management practices under terminal drought. J. Agric. Crop Sci. 201(3), 173–188 (2015).
Google Scholar
Madani, A., Rad, A. S., Pazoki, A., Nourmohammadi, G. & Zarghami, R. Wheat (Triticum aestivum L.) grain filling and dry matter partitioning responses to source: Sink modifications under postanthesis water and nitrogen deficiency. Acta Sci. Agron. 32, 145–151 (2010).
Google Scholar
Deng, X. P., Shan, L., Zhang, H. & Turner, N. C. Improving agricultural water use efficiency in arid and semiarid areas of China. Agric. Water Manag. 80(1–3), 23–40 (2006).
Google Scholar
Athar, H. R., Khan, A. & Ashraf, M. Inducing salt tolerance in wheat by exogenously applied ascorbic acid through different modes. J. Plant Nutr. 32, 1799–1817 (2009).
Google Scholar
Luo, et al. Dual plastic film and straw mulching boosts wheat productivity and soil quality under the El Nino in semiarid Kenya. Sci. Total Environ. 738, 139808 (2020).
Google Scholar
Duan, et al. Improvement of wheat productivity and soil quality by arbuscular mycorrhizal fungi is density-and moisture-dependent. Agron. Sustain. Dev. 41(1), 1–12 (2021).
Google Scholar
Source: Ecology - nature.com