Zanne, A. E. et al. Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. Biol. Rev. 95, 409–433 (2020).
Google Scholar
Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).
Google Scholar
Fraser, L. H. TRY—A plant trait database of databases. Glob. Chang. Biol. 26, 189–190 (2020).
Google Scholar
Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).
Google Scholar
Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Sci. Data 4, 170123 (2017).
Google Scholar
Lecocq, T. et al. TOFF, a database of traits of fish to promote advances in fish aquaculture. Sci. Data 6, 301 (2019).
Google Scholar
Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648 (2009).
Google Scholar
Parr, C. L. et al. GlobalAnts: a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conserv. Divers. 10, 5–20 (2017).
Google Scholar
Homburg, K., Homburg, N., Schäfer, F., Schuldt, A. & Assmann, T. Carabids.org – a dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conserv. Divers. 7, 195–205 (2014).
Google Scholar
Lowe, E. C. et al. Towards establishment of a centralized spider traits database. J. Arachnol. 48 (2020).
Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).
Google Scholar
Mammola, S., Carmona, C. P., Guillerme, T. & Cardoso, P. Concepts and applications in functional diversity. Funct. Ecol. 35, 1869–1885 (2021).
Google Scholar
de Bello, F. et al. Handbook of trait-based ecology: from theory to R tools. (Cambridge University Press, 2021).
Edwards, K. F. et al. Evolutionarily stable communities: a framework for understanding the role of trait evolution in the maintenance of diversity. Ecol. Lett. 21, 1853–1868 (2018).
Google Scholar
McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
Google Scholar
Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J. & Kattge, J. The emergence and promise of functional biogeography. Proc. Natl. Acad. Sci. 111, 13690–13696 (2014).
Google Scholar
Kosman, E., Burgio, K. R., Presley, S. J., Willig, M. R. & Scheiner, S. M. Conservation prioritization based on trait‐based metrics illustrated with global parrot distributions. Divers. Distrib. 25, 1156–1165 (2019).
Google Scholar
Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).
Google Scholar
de Bello, F. et al. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers. Conserv. 19, 2873–2893 (2010).
Google Scholar
Ficetola, G. F., Canedoli, C. & Stoch, F. The Racovitzan impediment and the hidden biodiversity of unexplored environments. Conserv. Biol. 33, 214–216 (2019).
Google Scholar
Mammola, S. et al. Collecting eco-evolutionary data in the dark: Impediments to subterranean research and how to overcome them. Ecol. Evol. 11, 5911–5926 (2021).
Google Scholar
Mammola, S. et al. Fundamental research questions in subterranean biology. Biol. Rev. 95, 1855–1872 (2020).
Google Scholar
Cardoso, P. Diversity and community assembly patterns of epigean vs. troglobiont spiders in the Iberian Peninsula. Int. J. Speleol. 41, 83–94 (2012).
Google Scholar
Fernandes, C. S., Batalha, M. A. & Bichuette, M. E. Does the cave environment reduce functional diversity? PLoS One 11, e0151958 (2016).
Google Scholar
Saccò, M. et al. New light in the dark – a proposed multidisciplinary framework for studying functional ecology of groundwater fauna. Sci. Total Environ. 662, 963–977 (2019).
Google Scholar
Mammola, S. & Isaia, M. Spiders in caves. Proceedings of the Royal Society B: Biological Sciences 284, 20170193 (2017).
Google Scholar
Parimuchová, A. et al. The food web in a subterranean ecosystem is driven by intraguild predation. Sci. Rep. 11, 4994 (2021).
Google Scholar
Bloom, T. et al. Discovery of two new species of eyeless spiders within a single Hispaniola cave. J. Arachnol. 42, 148–154 (2014).
Google Scholar
Mammola, S., Cardoso, P., Ribera, C., Pavlek, M. & Isaia, M. A synthesis on cave-dwelling spiders in Europe. J. Zool. Syst. Evol. Res. 56, 301–316 (2018).
Google Scholar
Mammola, S. et al. Continental data on cave-dwelling spider communities across Europe (Arachnida: Araneae). Biodivers. Data J. 7, e38492 (2019).
Google Scholar
Milano, F. et al. Spider conservation in Europe: a review. Biol. Conserv. 256, 109020 (2021).
Google Scholar
Pekár, S. et al. The World Spider Trait database (WST): a centralised global open repository for curated data on spider traits. Database 2021, baab064 (2021).
Google Scholar
Ledesma, E., Jiménez-Valverde, A., de Castro, A., Aguado-Aranda, P. & Ortuño, V. M. The study of hidden habitats sheds light on poorly known taxa: spiders of the Mesovoid Shallow Substratum. Zookeys 841, 39–59 (2019).
Google Scholar
World Spider Catalog. World Spider Catalog. Version 23.0. Natural History Museum Bern 10.24436/2 (2022).
Nentwig, W. et al. Araneae – Spider of Europe. 10.24436/1 (2021).
Malumbres-Olarte, J. et al. Habitat filtering and inferred dispersal ability condition across-scale species turnover and rarity in Macaronesian island spider assemblages. J. Biogeogr. 48, 3131–3144 (2021).
Google Scholar
Nentwig, W., Gloor, D. & Kropf, C. Spider taxonomists catch data on web. Nature 528, 479 (2015).
Google Scholar
Mammola, S. et al. Environmental filtering and convergent evolution determine the ecological specialization of subterranean spiders. Funct. Ecol. 34, 1064–1077 (2020).
Google Scholar
Mammola, S. et al. Ecological speciation in darkness? Spatial niche partitioning in sibling subterranean spiders (Araneae: Linyphiidae: Troglohyphantes). Invertebr. Syst. 32, 1069–1082 (2018).
Google Scholar
Huber, B. A. Cave-dwelling pholcid spiders (Araneae, Pholcidae): A review. Subterr. Biol. 26, 1–18 (2018).
Google Scholar
Arnedo, M. A., Oromí, P., Múrria, C., Macías-Hernández, N. & Ribera, C. The dark side of an island radiation: systematics and evolution of troglobitic spiders of the genus Dysdera Latreille (Araneae:Dysderidae) in the Canary Islands. Invertebr. Syst. 21, 623–660 (2007).
Google Scholar
Ubick, D., Paquin, P., Cushing, P. E. & Duperre, N. Spiders of North America: An Identification Manual. (Amer Arachnological Society, 2007).
Cardoso, P., Pekár, S., Jocqué, R. & Coddington, J. A. Global patterns of guild composition and functional diversity of spiders. PLoS One 6, e21710 (2011).
Google Scholar
Smithers, P. The early life history and dispersal of the cave spider Meta menardi (Latreille, 1804) (Araneae: Tetragnathidae). Bull. Br. arachnol. Soc 13, 213–216 (2005).
Mammola, S., Hormiga, G., Arnedo, M. A. & Isaia, M. Unexpected diversity in the relictual European spiders of the genus Pimoa (Araneae:Pimoidae). Invertebr. Syst. 30, 566–587 (2016).
Google Scholar
Sket, B. Can we agree on an ecological classification of subterranean animals? J. Nat. Hist. 42, 1549–1563 (2008).
Google Scholar
Trajano, E. & de Carvalho, M. R. Towards a biologically meaningful classification of subterranean organisms: A critical analysis of the schiner-racovitza system from a historical perspective, difficulties of its application and implications for conservation. Subterr. Biol. 22, 1–26 (2017).
Google Scholar
Martínez, A. & Mammola, S. Specialized terminology reduces the number of citations to scientific papers. Proc. R. Soc. B Biol. Sci. 288, 20202581 (2021).
Google Scholar
Mammola, S. Finding answers in the dark: caves as models in ecology fifty years after Poulson and White. Ecography 42, 1331–1351 (2019).
Google Scholar
Mammola, S. et al. Quantifying troglomorphism in hyperspace. Arpha Conf. Abstr. 5, e82941 (2022).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2016).
Palacio, F. X. et al. A protocol for reproducible functional diversity analyses. EcoEvoRxiv https://doi.org/10.32942/osf.io/yt9sb (2022).
Google Scholar
Gower, J. C. A General Coefficient of Similarity and Some of Its Properties. Biometrics 27, 857–871 (1971).
Google Scholar
de Bello, F., Botta-Dukát, Z., Lepš, J. & Fibich, P. Towards a more balanced combination of multiple traits when computing functional differences between species. Methods Ecol. Evol. 12, 443–448 (2021).
Google Scholar
Paradis, E. & Schliep, K. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
Google Scholar
Oksanen, J. et al. R Package vegan: community ecology package. R package version 2.5-3 (2018).
R Core Team. R: A language and environment for statistical computing. (2021).
Mammola, S. A trait database for European subterranean spiders, Figshare, https://doi.org/10.6084/m9.figshare.16574255 (2022).
Cardoso, P. & Pekar, S. arakno – An R package for effective spider nomenclature, distribution, and trait data retrieval from online resources. J. Arachnol. 50, 30–32 (2022).
Google Scholar
Johnson, T. F., Isaac, N. J. B., Paviolo, A. & González-Suárez, M. Handling missing values in trait data. Glob. Ecol. Biogeogr. 30, 51–62 (2021).
Google Scholar
Podani, J., Kalapos, T., Barta, B. & Schmera, D. Principal component analysis of incomplete data – A simple solution to an old problem. Ecol. Inform. 61, 101235 (2021).
Google Scholar
Cardoso, P., Mammola, S., Rigal, F. & Carvalho, J. C. BAT: Biodiversity Assessment Tools. R package version 2.6.0 (2021).
Cardoso, P., Rigal, F. & Carvalho, J. C. BAT – Biodiversity Assessment Tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods Ecol. Evol. 6, 232–236 (2015).
Google Scholar
De Bello, F. et al. Quantifying the relevance of intraspecific trait variability for functional diversity. Methods Ecol. Evol. 2, 163–174 (2011).
Google Scholar
Violle, C. et al. The return of the variance: intraspecific variability in community ecology. Trends Ecol. Evol. 27, 244–252 (2012).
Google Scholar
Gentile, G., Bonelli, S. & Riva, F. Evaluating intraspecific variation in insect trait analysis. Ecol. Entomol. 46, 11–18 (2020).
Google Scholar
Wong, M. K. L. & Carmona, C. P. Including intraspecific trait variability to avoid distortion of functional diversity and ecological inference: Lessons from natural assemblages. Methods Ecol. Evol. 12, 946–957 (2021).
Google Scholar
Mammola, S., Piano, E., Malard, F., Vernon, P. & Isaia, M. Extending Janzen’s hypothesis to temperate regions: a test using subterranean ecosystems. Funct. Ecol. 33, 1638–1650 (2019).
Google Scholar
Kratochvíl, J. Araignées cavernicoles des îles Dalmates. Přírodovědné práce ústavů Československé Akad. Věd v Brně 12, 1–59 (1978).
Denny, M. The fallacy of the average: on the ubiquity, utility and continuing novelty of Jensen’s inequality. J. Exp. Biol. 220, 139–146 (2017).
Google Scholar
Mammola, S. et al. Cave_dwelling_spiders_Europe. Figshare https://doi.org/10.6084/m9.figshare.8224025.v1 (2019).
Darwin, C. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle of life. (John Murray, 1859).
Wong, M. K. L., Guénard, B. & Lewis, O. T. Trait-based ecology of terrestrial arthropods. Biol. Rev. 94, 999–1022 (2019).
Google Scholar
Lučić, I. Interview with Boris Sket: nothing has a sense in speleobiology, without a comparison of cave animals with the ‘normal’ epigean ones. Acta Carsologica 50, 5–9 (2021).
Google Scholar
McGill, B. J. The what, how and why of doing macroecology. Glob. Ecol. Biogeogr. 28, 6–17 (2019).
Google Scholar
Muscarella, R. & Uriarte, M. Do community-weighted mean functional traits reflect optimal strategies? Proc. R. Soc. B Biol. Sci. 283, 20152434 (2016).
Google Scholar
Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).
Google Scholar
Mammola, S. & Cardoso, P. Functional diversity metrics using kernel density n-dimensional hypervolumes. Methods Ecol. Evol. 11, 986–995 (2020).
Google Scholar
Mammola, S. et al. Local- versus broad-scale environmental drivers of continental β-diversity patterns in subterranean spider communities across Europe. Proc. R. Soc. B Biol. Sci. 286, 20191579 (2019).
Google Scholar
Graco-Roza, C. et al. Distance decay 2.0 – a global synthesis of taxonomic and functional turnover in ecological communities. Glob. Ecol. Biogeogr, in press (available at https://doi.org/10.1101/2021.03.17.435827) (2022).
Gallagher, R. V. et al. A guide to using species trait data in conservation. One Earth 4, 927–936 (2021).
Google Scholar
Chichorro, F., Juslén, A. & Cardoso, P. A review of the relation between species traits and extinction risk. Biol. Conserv. 237, 220–229 (2019).
Google Scholar
Chichorro, F. et al. Species traits predict extinction risk across the Tree of Life. bioRxiv 2020.07.01.183053 (2020).
Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).
Google Scholar
Carmona, C. P. et al. Erosion of global functional diversity across the tree of life. Sci. Adv. 7, eabf2675 (2021).
Google Scholar
Loreau, M. et al. Biodiversity as insurance: from concept to measurement and application. Biol. Rev. 96, 2333–2354 (2021).
Google Scholar
Sánchez-Fernández, D., Galassi, D. M. P., Wynne, J. J., Cardoso, P. & Mammola, S. Don’t forget subterranean ecosystems in climate change agendas. Nat. Clim. Chang. 11, 458–459 (2021).
Google Scholar
Borges, P. A. V. et al. Volcanic caves: Priorities for conserving the Azorean endemic troglobiont species. Int. J. Speleol. 41, 101–112 (2012).
Google Scholar
Rabelo, L. M., Souza-Silva, M. & Ferreira, R. L. Priority caves for biodiversity conservation in a key karst area of Brazil: comparing the applicability of cave conservation indices. Biodivers. Conserv. 27, 2097–2129 (2018).
Google Scholar
Nitzu, E. et al. Assessing preservation priorities of caves and karst areas using the frequency of endemic cave-dwelling species. Int. J. Speleol. 47, 43–52 (2018).
Google Scholar
Pipan, T., Deharveng, L. & Culver, D. C. Hotspots of subterranean biodiversity. Diversity 12, 209 (2020).
Google Scholar
Fattorini, S., Fiasca, B., Di Lorenzo, T., Di Cicco, M. & Galassi, D. M. P. A new protocol for assessing the conservation priority of groundwater-dependent ecosystems. Aquat. Conserv. Mar. Freshw. Ecosyst. 30, 1483–1504 (2020).
Google Scholar
Iannella, M. et al. Getting the ‘most out of the hotspot’ for practical conservation of groundwater biodiversity. Glob. Ecol. Conserv. e01844 (2021).
Mazel, F. et al. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat. Commun. 9, 2888 (2018).
Google Scholar
Cadotte, M. W. & Tucker, C. M. Difficult decisions: Strategies for conservation prioritization when taxonomic, phylogenetic and functional diversity are not spatially congruent. Biol. Conserv. 225, 128–133 (2018).
Google Scholar
Hanson, J. O. et al. Global conservation of species’ niches. Nature 580, 232–234 (2020).
Google Scholar
Pollock, L. J. et al. Protecting biodiversity (in all its complexity): new models and methods. Trends Ecol. Evol. 35, 1119–1128 (2020).
Google Scholar
Mammola, S. et al. Scientists’ warning on the conservation of subterranean ecosystems. Bioscience 69, 641–650 (2019).
Google Scholar
Wynne, J. J. et al. A conservation roadmap for the subterranean biome. Conserv. Lett. 14, e12834 (2021).
Google Scholar
Mammola, S. et al. Towards evidence-based conservation of subterranean ecosystems. Biol. Rev., early view at https://doi.org/10.1111/brv.12851 (2022).
Culver, D. C. & Pipan, T. The biology of caves and other subterranean habitats. (Oxford University Press, USA, 2014).
Culver, D. C. & Pipan, T. Shallow Subterranean Habitats: Ecology, Evolution, and Convervation. (Oxford University Press, USA, 2014).
Sobral, M. All traits are functional: an evolutionary viewpoint. Trends Plant Sci. 26, 674–676 (2021).
Google Scholar
Pipan, T. & Culver, D. C. The unity and diversity of the subterranean realm with respect to invertebrate body size. J. Cave Karst Stud. 79, 1–9 (2017).
Google Scholar
Elgar, M. A., Ghaffar, N. & Read, A. F. Sexual dimorphism in leg length among orb-weaving spiders: a possible role for sexual cannibalism. J. Zool. 222, 455–470 (1990).
Google Scholar
Deeleman-Reinhold, C. L. Revision of the cave-dwelling and related spiders of the genus Troglohyphantes Joseph (Linyphiidae), with special reference to the Yugoslav species. Opera Acad. Sci. Artium Slov. 23 (1978).
Isaia, M. & Pantini, P. New data on the spider genus Troglohyphantes (Araneae, Linyphiidae) in the Italian Alps, with the description of a new species and a new synonymy. Zootaxa 2690, 1–18 (2010).
Google Scholar
Hagstrum, D. W. Carapace width as a tool for evaluating the rate of development of spiders in the laboratory and the field. Ann. Entomol. Soc. Am. 64, 757–760 (1971).
Google Scholar
Pavlek, M. & Mammola, S. Niche-based processes explaining the distributions of closely related subterranean spiders. J. Biogeogr. 48, 118–133 (2020).
Google Scholar
Mammola, S. Modelling the future spread of native and alien congeneric species in subterranean habitats – The case of meta cave-dwelling spiders in Great Britain. Int. J. Speleol. 46, 427–437 (2017).
Google Scholar
Novak, T. et al. Niche partitioning in orbweaving spiders Meta menardi and Metellina merianae (Tetragnathidae). Acta Oecologica 36, 522–529 (2010).
Google Scholar
Lunghi, E. Occurrence of the Black lace-weaver spider, Amaurobius ferox, in caves. Acta Carsologica 49, 119–124 (2020).
Google Scholar
Isaia, M. & Chiarle, A. Taxonomic notes on Cybaeus vignai Brignoli, 1977 (Araneae, Cybaeidae) and Dysdera cribrata Simon, 1882 (Araneae, Dysderidae) from the Italian Maritime Alps. Zoosystema 37, 45–56 (2015).
Google Scholar
Ledford, J. et al. Phylogenomics and biogeography of leptonetid spiders (Araneae: Leptonetidae). Invertebr. Syst. 35, 332–349 (2021).
Isaia, M., Mammola, S., Mazzuca, P., Arnedo, M. A. & Pantini, P. Advances in the systematics of the spider genus Troglohyphantes (Araneae, Linyphiidae). Syst. Biodivers. 15, 307–326 (2017).
Google Scholar
Hajer, J. & Řeháková, D. Spinning activity of the spider Trogloneta granulum (Araneae, Mysmenidae): web, cocoon, cocoon handling behaviour, draglines and attachment discs. Zoology 106, 223–231 (2003).
Google Scholar
Huber, B. A., Pavlek, M. & Komnenov, M. Revision of the spider genus Stygopholcus (Araneae, Pholcidae), endemic to the Balkan Peninsula. Eur. J. Taxon. 752, 1–60 (2021).
Huber, B. A. Revision of the spider genus Hoplopholcus Kulczyński (Araneae, Pholcidae). Zootaxa 4726, 1–94 (2020).
Google Scholar
Cardoso, P. & Scharff, N. First record of the spider family symphytognathidae in Europe and description of Anapistula ataecina sp. n. (araneae). Zootaxa 2246, 45–57 (2009).
Google Scholar
Wang, C., Ribera, C. & Li, S. On the identity of the type species of the genus Telema (Araneae, Telemidae). Zookeys 251, 11–19 (2012).
Google Scholar
Hesselberg, T., Simonsen, D. & Juan, C. Do cave orb spiders show unique behavioural adaptations to subterranean life? A review of the evidence. Behaviour 1–28 (2019).
Source: Ecology - nature.com