in

Increased abundance of a common scavenger affects allocation of carrion but not efficiency of carcass removal in the Fukushima Exclusion Zone

  • Lim, N., Kelt, D. A., Lim, K. K. & Bernard, H. Vertebrate scavengers control abundance of diarrheal-causing bacteria in tropical plantations. Zool. Stud. 59, 1–10 (2020).

    Google Scholar 

  • Beasley, J. C., Olson, Z. H. & DeVault, T. L. Ecological role of vertebrate scavengers. In: Carrion Ecology, Evolution and their Applications. (eds Benbow, E.M., Tomberlin, J. & Tarone, A.) 107–127 (CRC Press, 2015).

  • Ogada, D. L., Keesing, F. & Virani, M. Z. Dropping dead: Causes and consequences of vulture population declines worldwide. Ann. N. Y. Acad. Sci. 1249, 57–71 (2012).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Reid, W. V. et al. Ecosystems and Human Well-Being-Synthesis: A Report of the Millennium Ecosystem Assessment (Island Press, 2005).

    Google Scholar 

  • Wilson, E. E. & Wolkovich, E. M. Scavenging: How carnivores and carrion structure communities. Trends Ecol. Evol. 26, 129–135 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Moleón, M., Sánchez-Zapata, J. A., Selva, N., Donázar, J. A. & Owen-Smith, N. Inter-specific interactions linking predation and scavenging in terrestrial vertebrate assemblages. Biol. Rev. 89, 1042–1054. https://doi.org/10.1111/brv.12097 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Fonseca, C. R. & Ganade, G. Species functional redundancy, random extinctions and the stability of ecosystems. J. Ecol. 89, 118–125 (2001).

    Article 

    Google Scholar 

  • Mori, A. S., Furukawa, T. & Sasaki, T. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88, 349–364. https://doi.org/10.1111/brv.12004 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Huijbers, C. M. et al. Limited functional redundancy in vertebrate scavenger guilds fails to compensate for the loss of raptors from urbanized sandy beaches. Divers. Distrib. 21, 55–63 (2015).

    Article 

    Google Scholar 

  • Ceballos, G. et al. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Buechley, E. R. & Şekercioğlu, Ç. H. The Avian scavenger crisis: Looming extinctions, trophic cascades, and loss of critical ecosystem functions. Biol. Cons. 198, 220–228 (2016).

    Article 

    Google Scholar 

  • Hill, J. E., DeVault, T. L., Wang, G. & Belant, J. L. Anthropogenic mortality in mammals increases with the human footprint. Front. Ecol. Environ. 18, 13–18. https://doi.org/10.1002/fee.2127 (2019).

    Article 

    Google Scholar 

  • Sebastián-González, E. et al. Scavenging in the Anthropocene: Human impact drives vertebrate scavenger species richness at a global scale. Glob. Change Biol. 25, 3005–3017 (2019).

    ADS 
    Article 

    Google Scholar 

  • Sebastián-González, E. et al. Network structure of vertebrate scavenger assemblages at the global scale: Drivers and ecosystem functioning implications. Ecography 43, 1–13. https://doi.org/10.1111/ecog.05083 (2020).

    Article 

    Google Scholar 

  • Marneweck, C. J., Katzner, T. E. & Jachowski, D. S. Predicted climate-induced reductions in scavenging in eastern North America. Glob. Change Biol. 27, 3383–3394. https://doi.org/10.1111/gcb.15653 (2021).

    Article 

    Google Scholar 

  • Mokany, K., Ash, J. & Roxburgh, S. Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. J. Ecol. 96, 884–893. https://doi.org/10.1111/j.1365-2745.2008.01395.x (2008).

    Article 

    Google Scholar 

  • Gagic, V. et al. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc. R. Soc. B Biol. Sci. 282, 20142620 (2015).

    Article 

    Google Scholar 

  • Mateo-Tomás, P., Olea, P. P., Selva, N. & Sánchez-Zapata, J. A. Species and individual replacements contribute more than nestedness to shape vertebrate scavenger metacommunities. Ecography 42, 365–375 (2019).

    Article 

    Google Scholar 

  • Sebastián-González, E. et al. Functional traits driving species role in the structure of terrestrial vertebrate scavenger networks. Ecology https://doi.org/10.1002/ecy.3519 (2021).

    Article 
    PubMed 

    Google Scholar 

  • DeVault, T. L., Rhodes, O. E. Jr. & Shivik, J. A. Scavenging by vertebrates: Behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102, 225–234 (2003).

    Article 

    Google Scholar 

  • Allen, M. L., Elbroch, L. M., Wilmers, C. C. & Wittmer, H. U. The comparative effects of large carnivores on the acquisition of carrion by scavengers. Am. Nat. 185, 822–833 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Moleón, M., Sánchez-Zapata, J. A., Sebastián-González, E. & Owen-Smith, N. Carcass size shapes the structure and functioning of an African scavenging assemblage. Oikos 124, 1391–1403 (2015).

    Article 

    Google Scholar 

  • Gutiérrez-Cánovas, C. et al. Large home range scavengers support higher rates of carcass removal. Funct. Ecol. 34, 1921–1932 (2020).

    Article 

    Google Scholar 

  • Walker, M. A. et al. Factors influencing scavenger guilds and scavenging efficiency in Southwestern Montana. Sci. Rep. https://doi.org/10.1038/s41598-021-83426-3 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Winfree, R., Fox, J., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635. https://doi.org/10.1111/ele.12424 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Mateo-Tomás, P., Olea, P. P., Moleón, M., Selva, N. & Sánchez-Zapata, J. A. Both rare and common species support ecosystem services in scavenger communities. Glob. Ecol. Biogeogr. 26, 1459–1470. https://doi.org/10.1111/geb.12673 (2017).

    Article 

    Google Scholar 

  • Butler, J. R. A. & du Toit, J. T. Diet of free-ranging domestic dogs (Canis familiaris) in rural Zimbabwe: Implications for wild scavengers on the periphery of wildlife reserves. Anim. Conserv. 5, 29–37. https://doi.org/10.1017/s136794300200104x (2002).

    Article 

    Google Scholar 

  • DeVault, T. L., Olson, Z. H., Beasley, J. C. & Rhodes, O. E. Jr. Mesopredators dominate competition for carrion in an agricultural landscape. Basic Appl. Ecol. 12, 268–274 (2011).

    Article 

    Google Scholar 

  • Ogada, D. L., Torchin, M. E., Kinnaird, M. F. & Ezenwa, V. O. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460. https://doi.org/10.1111/j.1523-1739.2012.01827.x (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Morales-Reyes, Z. et al. Scavenging efficiency and red fox abundance in Mediterranean mountains with and without vultures. Acta Oecol. 79, 81–88. https://doi.org/10.1016/j.actao.2016.12.012 (2017).

    ADS 
    Article 

    Google Scholar 

  • Inagaki, A. et al. Vertebrate scavenger guild composition and utilization of carrion in an East Asian temperate forest. Ecol. Evol. 10, 1223–1232 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Blazquez, M., Sanchez-Zapata, J. A., Botella, F., Carrete, M. & Eguía, S. Spatio-temporal segregation of facultative avian scavengers at ungulate carcasses. Acta Oecol. 35, 645–650 (2009).

    ADS 
    Article 

    Google Scholar 

  • Inger, R., Cox, D. T. C., Per, E., Norton, B. A. & Gaston, K. J. Ecological role of vertebrate scavengers in urban ecosystems in the UK. Ecol. Evol. 6, 7015–7023. https://doi.org/10.1002/ece3.2414 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hill, J. E., DeVault, T. L., Beasley, J. C., Rhodes, O. E. Jr. & Belant, J. L. Effects of vulture exclusion on carrion consumption by facultative scavengers. Ecol. Evol. 8, 2518–2526. https://doi.org/10.1002/ece3.3840 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Olson, Z., Beasley, J., DeVault, T. L. & Rhodes, O. E. Jr. Scavenger community response to the removal of a dominant scavenger. Oikos 121, 77–84 (2012).

    Article 

    Google Scholar 

  • Pardo-Barquín, E., Mateo-Tomás, P. & Olea, P. P. Habitat characteristics from local to landscape scales combine to shape vertebrate scavenging communities. Basic Appl. Ecol. 34, 126–139. https://doi.org/10.1016/j.baae.2018.08.005 (2019).

    Article 

    Google Scholar 

  • Turner, K. L., Conner, L. M. & Beasley, J. C. Effect of mammalian mesopredator exclusion on vertebrate scavenging communities. Sci. Rep. 10, 1–9 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ohashi, H. et al. Differences in the activity pattern of the wild boar Sus scrofa related to human disturbance. Eur. J. Wildl. Res. 59, 167–177. https://doi.org/10.1007/s10344-012-0661-z (2013).

    Article 

    Google Scholar 

  • Saito, M. & Koike, F. Distribution of wild mammal assemblages along an urban–rural–forest landscape gradient in warm-temperate East Asia. PLoS ONE 8, e65464. https://doi.org/10.1371/journal.pone.0065464 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235. https://doi.org/10.1126/science.aar7121 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Tsunoda, M. et al. Human disturbance affects latrine-use patterns of raccoon dogs. J. Wildl. Manag. 83, 728–736. https://doi.org/10.1002/jwmg.21610 (2019).

    Article 

    Google Scholar 

  • Watabe, R. & Saito, M. U. Effects of vehicle-passing frequency on forest roads on the activity patterns of carnivores. Landsc. Ecol. Eng. 17, 225–231. https://doi.org/10.1007/s11355-020-00434-7 (2021).

    Article 

    Google Scholar 

  • Luna, Á., Romero-Vidal, P. & Arrondo, E. Predation and scavenging in the city: A review of spatio-temporal trends in research. Diversity 13, 46. https://doi.org/10.3390/d13020046 (2021).

    Article 

    Google Scholar 

  • Huijbers, C. M., Schlacher, T. A., Schoeman, D. S., Weston, M. A. & Connolly, R. M. Urbanisation alters processing of marine carrion on sandy beaches. Landsc. Urban Plan. 119, 1–8 (2013).

    Article 

    Google Scholar 

  • Fukushima Prefectural Government. Transition of evacuation designated zones. https://www.pref.fukushima.lg.jp/site/portal-english/en03-08.html. (2019). Accessed 20 Apr 2022.

  • Steinhauser, G., Brandl, A. & Johnson, T. E. Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts. Sci. Total Environ. 470, 800–817 (2014).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Center for International Earth Science Information Network (CIESIN)—Columbia University. (NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY, 2018).

  • Lyons, P. C., Okuda, K., Hamilton, M. J., Hinton, T. G. & Beasley, J. C. Rewilding of Fukushima’s human evacuation zone in the presence of radioactive stressors. Front. Ecol. Environ. 18, 127–134 (2020).

    Article 

    Google Scholar 

  • Deryabina, T. G. et al. Long-term census data reveal abundant wildlife populations at Chernobyl. Curr. Biol. 25, R824–R826. https://doi.org/10.1016/j.cub.2015.08.017 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Webster, S. C. et al. Where the wild things are: Influence of radiation on the distribution of four mammalian species within the Chernobyl Exclusion Zone. Front. Ecol. Environ. 14, 185–190. https://doi.org/10.1002/fee.1227 (2016).

    Article 

    Google Scholar 

  • Schlichting, P. E., Love, C. N., Webster, S. C. & Beasley, J. C. Efficiency and composition of vertebrate scavengers at the land–water interface in the Chernobyl Exclusion Zone. Food Webs 18, e00107. https://doi.org/10.1016/j.fooweb.2018.e00107 (2019).

    Article 

    Google Scholar 

  • Newsome, T. M. et al. Monitoring the dead as an ecosystem indicator. Ecol. Evol. 11, 5844–5856. https://doi.org/10.1002/ece3.7542 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Turner, K. L., Abernethy, E. F., Mike Conner, L., Rhodes, O. E. Jr. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology 98, 2413–2424 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Ruzicka, R. E. & Conover, M. R. Does weather or site characteristics influence the ability of scavengers to locate food?. Ethology 118, 187–196 (2012).

    Article 

    Google Scholar 

  • Paula, J. J. S. et al. Camera-trapping as a methodology to assess the persistence of wildlife carcasses resulting from collisions with human-made structures. Wildl. Res. 41, 717–725. https://doi.org/10.1071/WR14063 (2015).

    Article 

    Google Scholar 

  • Selva, N., Jędrzejewska, B., Jędrzejewski, W. & Wajrak, A. Factors affecting carcass use by a guild of scavengers in European temperate woodland. Can. J. Zool. 83, 1590–1601 (2005).

    Article 

    Google Scholar 

  • Nakama, S., Yoshimura, K., Fujiwara, K., Ishikawa, H. & Iijima, K. Temporal decrease in air dose rate in the sub-urban area affected by the Fukushima Dai-ichi Nuclear Power Plant accident during four years after decontamination works. J. Environ. Radioact. 208–209, 106013. https://doi.org/10.1016/j.jenvrad.2019.106013 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ministry of the Environment of Japan. Off-Site Environmental Remediation in Affected Areas in Japan. http://josen.env.go.jp/en/decontamination/ (2020). Accessed 20 Apr 2022.

  • Japan Meteorological Agency. Climate in Namie in 2018: Monthly Overview Data. http://www.data.jma.go.jp/obd/stats/etrn/view/monthly_a1.php?prec_no=36&block_no=0295&year=2018&month=7&day=&view=p1 (2018). Accessed 1 Apr 2019.

  • De Vault, T. L., Brisbin, J., Lehr, I., Rhodes, J. & Olin, E. Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can. J. Zool. 82, 502–509 (2004).

    Article 

    Google Scholar 

  • Kane, A., Healy, K., Guillerme, T., Ruxton, G. D. & Jackson, A. L. A recipe for scavenging in vertebrates—The natural history of a behaviour. Ecography 40, 11. https://doi.org/10.1111/ecog.02817 (2017).

    Article 

    Google Scholar 

  • Natusch, D. J. D., Lyons, J. A. & Shine, R. How do predators and scavengers locate resource hotspots within a tropical forest?. Aust. Ecol. 42, 742–749. https://doi.org/10.1111/aec.12492 (2017).

    Article 

    Google Scholar 

  • Japan Aerospace Exploration Agency. High-resolution land use land cover map of Japan (ver.16.09). https://www.eorc.jaxa.jp/ALOS/en/lulc/lulc_index.htm (2011). Accessed 1 Apr 2019.

  • Newkirk, E. S. CPW Photo Warehouse. http://cpw.state.co.us/learn/Pages/ResearchMammalsSoftware.aspx (2016). Accessed 1 Apr 2019.

  • Therneau, T. M. A Package for Survival Analysis in R. R package version 3.3-1 (2022).

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).

    Article 

    Google Scholar 

  • Anderson, D. et al. Introgression dynamics from invasive pigs into wild boar following the March 2011 natural and anthropogenic disasters at Fukushima. Proc. R. Soc. B Biol. Sci. 288, 20210874. https://doi.org/10.1098/rspb.2021.0874 (2021).

    CAS 
    Article 

    Google Scholar 

  • Ishiniwa, H., Onuma, M. & Tamaoki, M. Behavior of Radionuclides in the Environment III 463–472 (Springer, 2022).

    Book 

    Google Scholar 

  • Nemoto, Y. et al. Effects of 137Cs contamination after the TEPCO Fukushima Dai-ichi Nuclear Power Station accident on food and habitat of wild boar in Fukushima Prefecture. J. Environ. Radioact. 225, 106342. https://doi.org/10.1016/j.jenvrad.2020.106342 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Olson, Z. H., Beasley, J. C. & Rhodes, O. E. Jr. Carcass type affects local scavenger guilds more than habitat connectivity. PLoS ONE 11, e0147798 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • DeVault, T. L., Seamans, T. W., Linnell, K. E., Sparks, D. W. & Beasley, J. C. Scavenger removal of bird carcasses at simulated wind turbines: Does carcass type matter?. Ecosphere. https://doi.org/10.1002/ecs2.1994 (2017).

    Article 

    Google Scholar 

  • Sugiura, S., Tanaka, R., Taki, H. & Kanzaki, N. Differential responses of scavenging arthropods and vertebrates to forest loss maintain ecosystem function in a heterogeneous landscape. Biol. Cons. 159, 206–213 (2013).

    Article 

    Google Scholar 

  • Enari, H. & Enari, H. S. Not avian but mammalian scavengers efficiently consume carcasses under heavy snowfall conditions: A case from northern Japan. Mamm. Biol. 101, 419–428. https://doi.org/10.1007/s42991-020-00097-9 (2021).

    Article 

    Google Scholar 

  • Selva, N., Jedrzejewska, B., Jedrzejewski, W. & Wajrak, A. Scavenging on European bison carcasses in Bialowieza primeval forest (eastern Poland). Ecoscience 10, 303–311 (2003).

    Article 

    Google Scholar 

  • Jojola-Elverum, S. M., Shivik, J. A. & Clark, L. Importance of bacterial decomposition and carrion substrate to foraging brown treesnakes. J. Chem. Ecol. 27, 1315–1331. https://doi.org/10.1023/a:1010357024140 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Abernethy, E. F., Turner, K. L., Beasley, J. C. & Rhodes, O. E. Jr. Scavenging along an ecological interface: Utilization of amphibian and reptile carcasses around isolated wetlands. Ecosphere 8, e01989. https://doi.org/10.1002/ecs2.1989 (2017).

    Article 

    Google Scholar 

  • Sugiura, S. & Hayashi, M. Functional compensation by insular scavengers: The relative contributions of vertebrates and invertebrates vary among islands. Ecography 41, 1173–1183 (2018).

    Article 

    Google Scholar 

  • Matsuo, R. & Ochiai, K. Dietary overlap among two introduced and one native sympatric carnivore species, the raccoon, the masked palm civet, and the raccoon dog, in Chiba Prefecture, Japan. Mammal Study 34, 187–194 (2009).

    Article 

    Google Scholar 

  • Drygala, F. & Zoller, H. Diet composition of the invasive raccoon dog (Nyctereutes procyonoides) and the native red fox (Vulpes vulpes) in north-east Germany. Hystrix Italian J. Mammal. 24, 190–194 (2014).

    Google Scholar 

  • Elmeros, M. et al. The diet of feral raccoon dog (Nyctereutes procyonoides) and native badger (Meles meles) and red fox (Vulpes vulpes) in Denmark. Mammal Res. 63, 405–413. https://doi.org/10.1007/s13364-018-0372-2 (2018).

    Article 

    Google Scholar 

  • Sekizawa, R., Ichii, K. & Kondo, M. Satellite-based detection of evacuation-induced land cover changes following the Fukushima Daiichi nuclear disaster. Remote Sensing Lett. 6, 824–833 (2015).

    Article 

    Google Scholar 

  • Ishihara, M. & Tadono, T. Land cover changes induced by the great east Japan earthquake in 2011. Sci. Rep. 7, 45769–45769. https://doi.org/10.1038/srep45769 (2017).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Focardi, S., Materassi, M., Innocenti, G. & Berzi, D. Kleptoparasitism and scavenging can stabilize ecosystem dynamics. Am. Nat. 190, 398–409 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Osugi, S., Trentin, B. E. & Koike, S. Impact of wild boars on the feeding behavior of smaller frugivorous mammals. Mamm. Biol. 97, 22–27 (2019).

    Article 

    Google Scholar 

  • Duľa, M. & Krofel, M. A cat in paradise: Hunting and feeding behaviour of Eurasian lynx among abundant naive prey. Mamm. Biol. 100, 685–690. https://doi.org/10.1007/s42991-020-00070-6 (2020).

    Article 

    Google Scholar 

  • Smith, J. B., Laatsch, L. J. & Beasley, J. C. Spatial complexity of carcass location influences vertebrate scavenger efficiency and species composition. Sci. Rep. 7, 10250. https://doi.org/10.1038/s41598-017-10046-1 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moleón, M. et al. Carrion availability in space and time. In Carrion Ecology and Management (eds Olea, P.P., Mateo-Tomás, P. & Sánchez-Zapata, J.A.) 23–44 (Springer International Publishing, 2019).

  • DeVault, T. L. & Rhodes, O. E. Jr. Identification of vertebrate scavengers of small mammal carcasses in a forested landscape. Acta Theriol. 47, 185–192 (2002).

    Article 

    Google Scholar 

  • Bumann, G. B. & Stauffer, D. F. Scavenging of ruffed grouse in the Appalachians: Influences and implications. Wildl. Soc. Bull. 1973–2006(30), 853–860 (2002).

    Google Scholar 

  • Young, A., Stillman, R., Smith, M. J. & Korstjens, A. H. An experimental study of vertebrate scavenging behavior in a Northwest European woodland context. J. Forensic Sci. 59, 1333–1342. https://doi.org/10.1111/1556-4029.12468 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Abernethy, E. F. et al. Carcasses of invasive species are predominantly utilized by invasive scavengers in an island ecosystem. Ecosphere 7 (2016).

  • DeVault, T. L. & Krochmal, A. R. Scavenging by snakes: An examination of the literature. Herpetologica 58, 429–436 (2002).

    Article 

    Google Scholar 

  • Shivik, J. A. & Clark, L. Ontogenetic shifts in carrion attractiveness to brown tree snakes (Boiga irregularis). J. Herpetol. 33, 334–336. https://doi.org/10.2307/1565737 (1999).

    Article 

    Google Scholar 

  • Campobasso, C. P., Di Vella, G. & Introna, F. Factors affecting decomposition and Diptera colonization. Forensic Sci. Int. 120, 18–27 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Lama Willa Baker challenges MIT audience to look beyond technology to solve the climate crises

    Whales from space dataset, an annotated satellite image dataset of whales for training machine learning models