in

Microbiomes of microscopic marine invertebrates do not reveal signatures of phylosymbiosis

  • Gilbert, S. F., Sapp, J. & Tauber, A. I. A symbiotic view of life: we have never been individuals. Q. Rev. Biol. 87, 325–341 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Bass, D., Stentiford, G. D., Wang, H.-C., Koskella, B. & Tyler, C. R. The pathobiome in animal and plant diseases. Trends Ecol. Evol. 34, 996–1008 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Husnik, F. & Keeling, P. J. The fate of obligate endosymbionts: reduction, integration, or extinction. Curr. Opin. Genet. Dev. 58-59, 1–8 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14, 374–384 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Nat Acad. Sci. USA 114, 9641–9646 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Holt, C. C., van der Giezen, M., Daniels, C. L., Stentiford, G. D. & Bass, D. Spatial and temporal axes impact ecology of the gut microbiome in juvenile European lobster (Homarus gammarus). ISME J. 14, 531–543 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Pollock, F. J. et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat. Commun. 9, 4921 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Thomas, T. et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat. Commun. 7, 11870 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Engelberts, J. P. et al. Characterization of a sponge microbiome using an integrative genome-centric approach. ISME J. 14, 1100–1110 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mallot, E. K. & Amato, K. R. Host specificity of the gut microbiome. Nat. Rev. Microbiol. 19, 639–653 (2021).

    Article 
    CAS 

    Google Scholar 

  • Colston, T. J. & Jackson, C. R. Microbiome evolution along divergent branches of the vertebrate tree of life: what is known and unknown. Mol. Ecol. 25, 3776–3800 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Levin, D. et al. Diversity and functional landscapes in the microbiota of animals in the wild. Science 372, eabb5352 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nishida, A. H. & Ochman, H. Rates of gut microbiome divergence in mammals. Mol. Ecol. 27, 1884–1897 (2013).

    Article 

    Google Scholar 

  • Brooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J. & Bordenstein, S. R. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 14, e2000225 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Mazel, F. et al. Is host filtering the main driver of phylosymbiosis across the tree of life? mSystems 3, https://doi.org/10.1128/mSystems.00097-18 (2018).

  • Lutz, H. L. et al. Ecology and host identity outweigh evolutionary history in shaping the bat microbiome. mBio 4, 6 (2019).

    Google Scholar 

  • Grond, K. et al. No evidence for phylosymbiosis in Western chipmunk species. FEMS Microbiol. Ecol. 96, fiz182 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Song, S. J. et al. Comparative analyses of vertebrate gut microbiomes reveal convergence between birds and bats. mBio 11, 1 (2020).

    Article 

    Google Scholar 

  • Trevelline, B. K., Sosa, J., Hartup, B. K. & Kohl, K. D. A bird’s-eye view of phylosymbiosis: weak signatures of phylosymbiosis among all 15 species of cranes. Proc. R. Soc. B 287, 20192988 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Youngblut, N. D. et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 10, 2200 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Amato, K. R. et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 576–587 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Moeller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Eckert, E. M., Anicic, N. & Fontaneto, D. Freshwater zooplankton microbiome composition is highly flexible and strongly influenced by the environment. Mol. Ecol. 30, 1545–1558 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–228 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bik, H. M. Microbial metazoa are microbes too. mSystems 4, e00109–e00119 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schuelke, T., Pereira, T. J., Hardy, S. M. & Bik, H. M. Nematode-associated microbial taxa do not correlate with host phylogeny, geographic region or feeding morphology in marine sediment habitats. Mol. Ecol. 27, 1930–1951 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Guidetti, R. et al. Further insights in the Tardigrada microbiome: phylogenetic position and prevalence of infection of four new Alphaproteobacteria putative endosymbionts. Zool. J. Linn. Soc. 188, 925–937 (2020).

    Article 

    Google Scholar 

  • Giere, O. Meiobenthology (Springer-Verlag, 2009).

  • Laumer, C. E. et al. Revisiting metazoan phylogeny with genomic sampling of all phyla. Proc. R. Soc. B 286, 20190831 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hammer, T. J., Sanders, J. G. & Fierer, N. Not all animals need a microbiome. FEMS Microbiol. Lett. 366, fnz117 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Alejandre-Colomo, C. et al. Cultivable Winogradskyella species are genomically distinct from the sympatric abundant candidate species. ISME Commun. 1, 51 (2021).

    Article 

    Google Scholar 

  • Husnik, F. et al. Bacterial and archaeal symbioses with protists. Curr. Biol. 31, R862–R877 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Salje, J. Cells within cells: Rickettsiales and the obligate intracellular bacterial lifestyle. Nat. Rev. Microbiol. 19, 375–390 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Neave, M. J., Apprill, A., Ferrier-Pagès, C. & Voolstra, C. R. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Appl. Microbiol. Biotechnol. 100, 8315–8324 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Weiland-Bräuer, N. et al. Composition of bacterial communities associated with Aurelia aurita changes with compartment, life stage, and population. Appl. Environ. Microbiol. 81, 6038–6052 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Bik, E. M. et al. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nat. Commun. 7, 10516 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Burns, A. R. et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 10, 655–664 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • McFall-Ngai, M. Adaptive immunity: care for the community. Nature 445, 153 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ruehland, C. & Dubilier, N. Gamma- and epsilonproteobacterial ectosymbionts of a shallow-water marine worm are related to deep-sea hydrothermal vent ectosymbionts. Environ. Microbiol. 12, 2312–2326 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Gruber-Vodicka, H. R. et al. Two intracellular and cell-type specific bacterial symbionts in the placozoan Trichoplax H2. Nat. Microbiol. 4, 1465–1474 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schockaert, E. R. in Methods for the Examination of Organismal Diversity in Soils and Sediments (ed. Hall, G. S.) 211–225 (CABI, 1996).

  • Higgins, R. P. in Introduction to the Study of Meiofauna (eds. Higgins, R. P. and Thiel, H.) 328–331 (SIP, 1988).

  • Schram, M. D. & Davison, P. G. Irwin Loops—a history and method of constructing homemade loops. Trans. Kans. Acad. Sci. 115, 35–40 (1903).

    Article 

    Google Scholar 

  • Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bower, S. M. et al. Preferential PCR amplification of parasitic protistan small subunit rDNA from metazoan tissues. J. Eukaryot. Microbiol. 51, 325–332 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Comeau, A. M., Li, W. K. W., Tremblay, J.-E., Carmack, E. C. & Lovejoy, C. Arctic ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS ONE 6, e27492 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhang, R.-Y. et al. Design of targeted primers based on 16S rRNA sequences in meta-transcriptomic datasets and identification of a novel taxonomic group in the Asgard archaea. BMC Microbiol. 20, 25 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Lane, D. J. in Nucleic Acid Techniques in Bacterial Systematics (eds Stackebrandt, E. & Goodfellow, M) 115–175 (Wiley, 1991).

  • Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Marcel, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10 (2011).

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  • Callahan, B. J. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

  • Love, M. I., Huber, W. & Anders, S. Moderate estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

  • Kurtz, Z. D. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11, e1004226 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Csardi, G. & Nepusz, T. The igraph Software Package for Complex Network Research (InterJournal, 2006).

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

  • Kolde, R. pheatmap: pretty heatmaps. R package version 1.0.12 https://CRAN.R-project.org/package=pheatmap (2015).

  • Lin, H. & Das Peddada, S. Analysis of composition of microbiomes with bias correction. Nat. Commun. 11, 3514 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Oksanen, J. vegan: Community Ecology Package. R package version 2.5.7 https://CRAN.R-project.org/package=vegan (2020).

  • Rouse, G., Pleijel, F. & Tilic, E. Annelida (Oxford Univ. Press, 2022).

  • Ahmed, M. & Holovachov, O. Twenty years after De Ley and Blaxter—How far did we progress in understanding the phylogeny of the phylum Nematoda? Animals 11, 3479 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Van Steenkiste, N. W. L., Herbert, E. R. & Leander, B. S. Species diversity in the marine microturbellarian Astrotorhynchus bifidus sensu lato (Platyhelminthes: Rhabdocoela) from the Northeast Pacific Ocean. Mol. Phylogenet. Evol. 120, 259–273 (2018).


  • Source: Ecology - nature.com

    Lama Willa Baker challenges MIT audience to look beyond technology to solve the climate crises

    Whales from space dataset, an annotated satellite image dataset of whales for training machine learning models