in

The role of zinc in the adaptive evolution of polar phytoplankton

  • Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Anbar, A. D. & Knoll, A. H. Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297, 1137–1142 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Saito, M. A., Sigman, D. M. & Morel, F. M. M. The bioinorganic chemistry of the ancient ocean: the co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean–Proterozoic boundary? Inorg. Chim. Acta 356, 308–318 (2003).

    CAS 

    Google Scholar 

  • Morel, F. M. M., Lam, P. J. & Saito, M. A. Trace metal substitution in marine phytoplankton. Annu. Rev. Earth Planet Sci. 48, 491–517 (2020).

    CAS 

    Google Scholar 

  • Morel, F. M. & Price, N. M. The biogeochemical cycles of trace metals in the oceans. Science 300, 944–947 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Twining, B. S. & Baines, S. B. The trace metal composition of marine phytoplankton. Annu. Rev. Mar. Sci. 5, 191–215 (2013).

    Google Scholar 

  • Ho, T.-Y. et al. The elemental composition of some marine phytoplankton. J. Phycol. 39, 1145–1159 (2003).

    CAS 

    Google Scholar 

  • Ellwood, M. J. Wintertime trace metal (Zn, Cu, Ni, Cd, Pb and Co) and nutrient distributions in the subantarctic zone between 40–52°S; 155–160°E. Mar. Chem. 112, 107–117 (2008).

    CAS 

    Google Scholar 

  • Zhao, Y., Vance, D., Abouchami, W. & de Baar, H. J. W. Biogeochemical cycling of zinc and its isotopes in the Southern Ocean. Geochim. Cosmochim. Acta 125, 653–667 (2014).

    CAS 

    Google Scholar 

  • John, S. G., Helgoe, J. & Townsend, E. Biogeochemical cycling of Zn and Cd and their stable isotopes in the Eastern Tropical South Pacific. Mar. Chem. 201, 256–262 (2018).

    CAS 

    Google Scholar 

  • Middag, R., de Baar, H. J. W. & Bruland, K. W. The relationships between dissolved zinc and major nutrients phosphate and silicate along the GEOTRACES GA02 transect in the West Atlantic Ocean. Glob. Biogeochem. Cy. 33, 63–84 (2019).

    CAS 

    Google Scholar 

  • Sunda, W. G. & Huntsman, S. A. Feedback interactions between zinc and phytoplankton in seawater. Limnol. Oceanogr. 37, 25–40 (1992).

    CAS 

    Google Scholar 

  • Sunda, W. G. & Huntsman, S. A. Cobalt and zinc interreplacement in marine phytoplankton: biological and geochemical implications. Limnol. Oceanogr. 40, 1404–1417 (1995).

    CAS 

    Google Scholar 

  • Vance, D. et al. Silicon and zinc biogeochemical cycles coupled through the Southern Ocean. Nat. Geosci. 10, 202 (2017).

    CAS 

    Google Scholar 

  • Weber, T., John, S., Tagliabue, A. & DeVries, T. Biological uptake and reversible scavenging of zinc in the global ocean. Science 361, 72 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Roshan, S., DeVries, T., Wu, J. & Chen, G. The internal cycling of zinc in the ocean. Glob. Biogeochem. Cy. 32, 1833–1849 (2018).

    CAS 

    Google Scholar 

  • Scott, C. et al. Bioavailability of zinc in marine systems through time. Nat. Geosci. 6, 125–128 (2012).

    Google Scholar 

  • Mock, T. et al. Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 541, 536–540 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Blaby-Haas, C. E. & Merchant, S. S. Comparative and functional algal genomics. Annu. Rev. Plant Biol. 70, 605–638 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Z. H. et al. Adaptation to extreme Antarctic environments revealed by the genome of a sea ice green alga. Curr. Biol. 30, 3330–3341 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Clarke, A. et al. The Southern Ocean benthic fauna and climate change: a historical perspective. Philos. Trans. R. Soc. Lond. B 338, 299–309 (1992).

    Google Scholar 

  • Klug, A. The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu. Rev. Biochem. 79, 213–231 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Krishna, S. S., Majumdar, I. & Grishin, N. V. Structural classification of zinc fingers: survey and summary. Nucleic Acids Res. 31, 532–550 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barlow, P. N. et al. Structure of the C3HC4 domain by 1H-nuclear magnetic resonance spectroscopy: a new structural class of zinc-finger. J. Mol. Biol. 237, 201–211 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Stephens, T. G. et al. Genomes of the dinoflagellate Polarella glacialis encode tandemly repeated single-exon genes with adaptive functions. BMC Biol. 18, 56 (2020).

  • Aranda, M. et al. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci. Rep. 6, 39734 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, H. et al. Symbiodinium genomes reveal adaptive evolution of functions related to coral–dinoflagellate symbiosis. Commun. Biol. 1, 95 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shoguchi, E. et al. Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr. Biol. 23, 1399–1408 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Shoguchi, E. et al. Two divergent Symbiodinium genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes. BMC Genomics 19, 458 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoppe, C. J. M., Flintrop, C. M. & Rost, B. The Arctic picoeukaryote Micromonas pusilla benefits synergistically from warming and ocean acidification. Biogeosciences 15, 4353–4365 (2018).

    CAS 

    Google Scholar 

  • Ferguson, R. E. et al. Housekeeping proteins: a preliminary study illustrating some limitations as useful references in protein expression studies. Proteomics 5, 566–571 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Aslam, S. N. et al. Identifying metabolic pathways for production of extracellular polymeric substances by the diatom Fragilariopsis cylindrus inhabiting sea ice. ISME J. 12, 1237–1251 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Valenzuela, J. J. et al. Ocean acidification conditions increase resilience of marine diatoms. Nat. Commun. 9, 2328 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin, K. et al. The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole. Nat. Commun. 12, 5483 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mock, Thomas. Sea of Change: Eukaryotic Phytoplankton Communities in the Arctic Ocean. United States. https://doi.org/10.25585/1488054

  • Duncan, A. et al. Metagenome-assembled genomes of phytoplankton communities across the Arctic Circle and Atlantic Oceans. Microbiome 10 https://doi.org/10.1186/s40168-022-01254-7 (2022).

  • Persi, E., Wolf, Y. I. & Koonin, E. V. Positive and strongly relaxed purifying selection drive the evolution of repeats in proteins. Nat. Commun. 7, 13570 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mock, T. & Gradinger, R. Determination of Arctic ice algal production with a new in situ incubation technique. Mar. Ecol. Prog. Ser. 177, 15–26 (1999).

    CAS 

    Google Scholar 

  • Rühle, T., Hemschemeier, A., Melis, A. & Happe, T. A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtii strains. BMC Plant Biol. 8, 107 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Crawford, D. W. et al. Influence of zinc and iron enrichments on phytoplankton growth in the northeastern subarctic Pacific. Limnol. Oceanogr. 48, 1583–1600 (2003).

    CAS 

    Google Scholar 

  • Provasoli, L. Media and prospects for the cultivation of marine algae. In Cultures and Collections of Algae. Proc. US-Japan Conference, Hakone, 12-15 September 1966 (eds Watanabe, A & Hattori, A.) 63–75 (Japanese Society of Plant Physiology, 1968).

  • Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11, 1432 (2020).

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ye, C. X. et al. DBG2OLC: efficient assembly of large genomes using long erroneous reads of the third generation sequencing technologies. Sci. Rep. 6, 31900 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chin, C. S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qin, M. et al. LRScaf: improving draft genomes using long noisy reads. BMC Genomics 20, 955 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinf. 9, 18 (2008).

    Google Scholar 

  • Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ou, S. J. & Jiang, N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 176, 1410–1422 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf. 11, 119 (2010).

    Google Scholar 

  • Stanke, M., Schöffmann, O., Morgenstern, B. & Waack, S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinf. 7, 62 (2006).

    Google Scholar 

  • Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mitchell, A. L. et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 47, D351–D360 (2018).

    PubMed Central 

    Google Scholar 

  • Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).

    CAS 
    PubMed 

    Google Scholar 

  • Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Z. et al. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genom. Proteom. Bioinf. 4, 259–263 (2006).

    CAS 

    Google Scholar 

  • Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Yang, Z. H. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Wiśniewski, J. R., Hein, M. Y., Cox, J. & Mann, M. A ‘proteomic ruler’ for protein copy number and concentration estimation without spike-in standards. Mol. Cell Proteom. 13, 3497–3506 (2014).

    Google Scholar 

  • Huntemann, M. et al. The standard operating procedure of the DOE-JGI Metagenome Annotation Pipeline (MGAP v.4). Stand. Genomic Sci. 10, 86 (2016).

    Google Scholar 

  • Fu, L. et al. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bushnell, B. BBMap: A Fast, Accurate, Splice-aware Aligner (Lawrence Berkeley National Laboratory, 2014).

  • Löytynoja, A. Phylogeny-aware Alignment with PRANK: Multiple Sequence Alignment Methods (Humana Press, 2014).

  • Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).

    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Cracking the case of Arctic sea ice breakup

    Removal of organic matter and nutrients from hospital wastewater by electro bioreactor coupled with tubesettler