in

Asymmetric host movement reshapes local disease dynamics in metapopulations

  • Ritchie, H. & Roser, M. Urbanization. Our World in Data (2018). https://ourworldindata.org/urbanization.

  • Chen, H., Weersink, A., Beaulieu, M., Lee, Y. N. & Nagelschmitz, K. A historical review of changes in farm size in canada. Tech. Rep., University of Guelph, Institute for the Advanced Study of Food and and Agricultural Policy (2019).

  • Gudelj, I. & White, K. Spatial heterogeneity, social structure and disease dynamics of animal populations. Theor. Popul. Biol. 66, 139–149 (2004).

    CAS 
    MATH 
    Article 

    Google Scholar 

  • Augustin, N., Mugglestone, M. A. & Buckland, S. T. An autologistic model for the spatial distribution of wildlife. J. Appl. Ecol. 339–347 (1996).

  • Karlsson, E. K., Kwiatkowski, D. P. & Sabeti, P. C. Natural selection and infectious disease in human populations. Nat. Rev. Genetics 15, 379–393 (2014).

    CAS 
    Article 

    Google Scholar 

  • Fornaciari, A. Environmental microbial forensics and archaeology of past pandemics. Microbiol. Spect. 5, 5–1 (2017).

    Article 

    Google Scholar 

  • Thèves, C., Crubézy, E. & Biagini, P. History of smallpox and its spread in human populations. Microbiol. Spect. 4, 4–4 (2016).

    Article 

    Google Scholar 

  • Coltart, C. E., Lindsey, B., Ghinai, I., Johnson, A. M. & Heymann, D. L. The ebola outbreak, 2013–2016: old lessons for new epidemics. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160297 (2017).

    Article 

    Google Scholar 

  • Colizza, V., Barrat, A., Barthelemy, M., Valleron, A.-J. & Vespignani, A. Modeling the worldwide spread of pandemic influenza: Baseline case and containment interventions. PLOS Med. 4, e13 (2007).

    Article 

    Google Scholar 

  • Lüthy, I. A., Ritacco, V. & Kantor, I. N. One hundred years after the “Spanish” flu. Medicina 78, 113–118 (2018).

    Google Scholar 

  • Zhang, Y., Zhang, A. & Wang, J. Exploring the roles of high-speed train, air and coach services in the spread of COVID-19 in China. Transport Policy 94, 34–42 (2020).

    Article 

    Google Scholar 

  • Coelho, M. T. P. et al. Global expansion of COVID-19 pandemic is driven by population size and airport connections. PeerJ 8, e9708 (2020).

    Article 

    Google Scholar 

  • Tompkins, D. M., Carver, S., Jones, M. E., Krkošek, M. & Skerratt, L. F. Emerging infectious diseases of wildlife: A critical perspective. Trends Parasitol. 31, 149–159 (2015).

    Article 

    Google Scholar 

  • Soulsbury, C. D. & White, P. C. Human-wildlife interactions in urban areas: A review of conflicts, benefits and opportunities. Wildl. Res. 42, 541–553 (2015).

    Article 

    Google Scholar 

  • VanderWaal, K. L. et al. Network analysis of cattle movements in Uruguay: Quantifying heterogeneity for risk-based disease surveillance and control. Prevent. Vet. Med. 123, 12–22 (2016).

    Article 

    Google Scholar 

  • Rossi, G. et al. The potential role of direct and indirect contacts on infection spread in dairy farm networks. PLOS Comput. Biol. 13, e1005301 (2017).

    Article 

    Google Scholar 

  • Stoddard, S. T. et al. The role of human movement in the transmission of vector-borne pathogens. PLOS Neg. Trop. Dis. 3, e481 (2009).

    Article 

    Google Scholar 

  • Cosner, C. Models for the effects of host movement in vector-borne disease systems. Math. Biosci. 270, 192–197 (2015).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Scherer, P.C. Infection on the move: individual host movement drives disease persistence in spatially structured landscapes. Dr. rer. nat. thesis, Universität Potsdam (2019).

  • Riley, S. Large-scale spatial-transmission models of infectious disease. Science 316, 1298–1301 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Dougherty, E. R., Seidel, D. P., Carlson, C. J., Spiegel, O. & Getz, W. M. Going through the motions: Incorporating movement analyses into disease research. Ecol. Lett. 21, 588–604 (2018).

    Article 

    Google Scholar 

  • Daversa, D., Fenton, A., Dell, A., Garner, T. & Manica, A. Infections on the move: How transient phases of host movement influence disease spread. Proc. R. Soc. B Biol. Sci. 284, 20171807 (2017).

    Article 

    Google Scholar 

  • MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, 2001).

    Book 

    Google Scholar 

  • Kobayashi, K. & Okumura, M. The growth of city systems with high-speed railway systems. Ann. Region. Sci. 31, 39–56 (1997).

    Article 

    Google Scholar 

  • VanderWaal, K., Perez, A., Torremorrell, M., Morrison, R. M. & Craft, M. Role of animal movement and indirect contact among farms in transmission of porcine epidemic diarrhea virus. Epidemics 24, 67–75 (2018).

    Article 

    Google Scholar 

  • Hanski, I. Metapopulation dynamics. Nature 396, 41–49 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Colizza, V. & Vespignani, A. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations. J. Theor. Biol. 251, 450–467 (2008).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Wang, L. & Li, X. Spatial epidemiology of networked metapopulation: An overview. Chin. Sci. Bull. 59, 3511–3522 (2014).

    Article 

    Google Scholar 

  • Ruxton, G. D. Low levels of immigration between chaotic populations can reduce system extinctions by inducing asynchronous regular cycles. Proc. R. Soc. Lond. Seri. B Biol. Sci. 256, 189–193 (1994).

    ADS 
    Article 

    Google Scholar 

  • Earn, D. J. D., Rohani, P. & Grenfell, B. T. Persistence chaos and synchrony in ecology and epidemiology. Proc. R. Soc. Lond. Seri. B Biol. Sci. 265, 7–10 (1998).

    CAS 
    Article 

    Google Scholar 

  • Rosenzweig, M. L. Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hilker, F. M. & Schmitz, K. Disease-induced stabilization of predator-prey oscillations. J. Theor. Biol. 255, 299–306 (2008).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Brown, J. H. & Kodric-Brown, A. Turnover rates in insular biogeography: Effect of immigration on extinction. Ecology 58, 445–449 (1977).

    Article 

    Google Scholar 

  • Philipson, T. Economic epidemiology and infectious diseases. Handb. Health Econ. 1, 1761–1799 (2000).

    Article 

    Google Scholar 

  • Murdoch, W. W., Briggs, C. J. & Nisbet, R. M. Consumer-Resource Dynamics, Monographs in Population Biology Vol. 36 (Princeton University Press, 2003).

    Google Scholar 

  • Murdoch, W. W. & Oaten, A. Predation and population stability. In Advances in Ecological Research, vol. 9, 1–131 (Elsevier, 1975).

  • Bolker, B. & Grenfell, B. T. Space, persistence and dynamics of measles epidemics. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 348, 309–320 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Keeling, M. J. & Rohani, P. Estimating spatial coupling in epidemiological systems: a mechanistic approach. Ecol. Lett. 5, 20–29 (2002).

    Article 

    Google Scholar 

  • Arino, J. Spatio-temporal spread of infectious pathogens of humans. Infect. Dis. Model. 2, 218–228 (2017).

    Google Scholar 

  • Keeling, M. J. & Rohani, P. Modeling Infectious Diseases in Humans and Animals (Princeton University Press, 2011).

    MATH 
    Book 

    Google Scholar 

  • Wilson, E. B. & Worcester, J. The spread of an epidemic. Proc. Nat. Acad. Sci. 31, 327 (1945).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Rushton, S. & Mautner, A. The deterministic model of a simple epidemic for more than one community. Biometrika 42, 126–132 (1955).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Lourenço, J. & Recker, M. Natural, persistent oscillations in a spatial multi-strain disease system with application to dengue. PLOS Comput. Biol. 9, e1003308 (2013).

    ADS 
    Article 

    Google Scholar 

  • Wikramaratna, P. S., Pybus, O. G. & Gupta, S. Contact between bird species of different lifespans can promote the emergence of highly pathogenic avian influenza strains. Proc. Natl. Acad. Sci. 111, 10767–10772 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Xiao, Y., Zhou, Y. & Tang, S. Modelling disease spread in dispersal networks at two levels. Math. Med. Biol. J. IMA 28, 227–244 (2011).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Arino, J., Ducrot, A. & Zongo, P. A metapopulation model for malaria with transmission-blocking partial immunity in hosts. J. Math. Biol. 64, 423–448 (2012).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • De Roos, A. M., Mccauley, E. & Wilson, W. G. Mobility versus density-limited predator-prey dynamics on different spatial scales. Proc. R. Soc. Lond. Ser. B Biol. Sci. 246, 117–122 (1991).

    ADS 
    Article 

    Google Scholar 

  • Dey, S., Goswami, B. & Joshi, A. Effects of symmetric and asymmetric dispersal on the dynamics of heterogeneous metapopulations: Two-patch systems revisited. J. Theor. Biol. 345, 52–60 (2014).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Anderson, R. M., Jackson, H. C., May, R. M. & Smith, A. M. Population dynamics of fox rabies in Europe. Nature 289, 765–771 (1981).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gupta, S., Ferguson, N. & Anderson, R. Chaos persistence, and evolution of strain structure in antigenically diverse infectious agents. Science 280, 912–915 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Holland, M. D. & Hastings, A. Strong effect of dispersal network structure on ecological dynamics. Nature 456, 792–794 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Singh, A. & Gakkhar, S. Synchronization of chaos in a food web in ecological systems. World Acad. Sci. Eng. Technol. 70, 94–98 (2010).

    Google Scholar 

  • Gotelli, N. J. Metapopulation models: The rescue effect, the propagule rain, and the core-satellite hypothesis. American Naturalist 138, 768–776 (1991).

    Article 

    Google Scholar 

  • Heino, M., Kaitala, V., Ranta, E. & Lindström, J. Synchronous dynamics and rates of extinction in spatially structured populations. Proc. R. Soc. Lond. Ser. B Biol. Sci. 264, 481–486 (1997).

    ADS 
    Article 

    Google Scholar 

  • Molofsky, J. & Ferdy, J.-B. Extinction dynamics in experimental metapopulations. Proc. Natl. Acad. Sci. 102, 3726–3731 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Saxena, G., Prasad, A. & Ramaswamy, R. Amplitude death: The emergence of stationarity in coupled nonlinear systems. Phys. Rep. 521, 205–228 (2012).

    ADS 
    Article 

    Google Scholar 

  • Majhi, S. & Ghosh, D. Amplitude death and resurgence of oscillation in networks of mobile oscillators. Europhys. Lett. 118, 40002 (2017).

    ADS 
    Article 

    Google Scholar 

  • Shen, C., Chen, H. & Hou, Z. Mobility and density induced amplitude death in metapopulation networks of coupled oscillators. Chaos 24, 043125 (2014).

    MATH 
    Article 

    Google Scholar 

  • Karnatak, R., Ramaswamy, R. & Feudel, U. Conjugate coupling in ecosystems: Cross-predation stabilizes food webs. Chaos Solitons Fractals 68, 48–57 (2014).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Bolker, B. M. & Grenfell, B. T. Chaos and biological complexity in measles dynamics. Proc. R. Soc. Lond. Ser. B Biol. Sci. 251, 75–81 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Olsen, L. F., Truty, G. L. & Schaffer, W. M. Oscillations and chaos in epidemics: A nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark. Theor. Popul. Biol. 33, 344–370 (1988).

    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar 

  • Lundberg, P., Ranta, E., Ripa, J. & Kaitala, V. Population variability in space and time. Trends Ecol. Evolut. 15, 460–464 (2000).

    CAS 
    Article 

    Google Scholar 

  • Dekker, A. Realistic social networks for simulation using network rewiring. In International Congress on Modelling and Simulation, 677–683 (2007).

  • Milgram, S. The small world problem. Psychol. Today 2, 60–67 (1967).

    Google Scholar 

  • Sallaberry, A., Zaidi, F. & Melançon, G. Model for generating artificial social networks having community structures with small-world and scale-free properties. Soc. Netw. Anal. Min. 3, 597–609 (2013).

    Article 

    Google Scholar 

  • Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. 104, 19891–19896 (2007).

    ADS 
    CAS 
    MATH 
    Article 

    Google Scholar 

  • Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl. Acad. Sci. 108, 3648–3652 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Girvan, M. & Newman, M. E. Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99, 7821–7826 (2002).

    ADS 
    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar 

  • Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E. & Taylor, W. W. Compartments revealed in food-web structure. Nature 426, 282–285 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Rezende, E. L., Albert, E. M., Fortuna, M. A. & Bascompte, J. Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecol. Lett. 12, 779–788 (2009).

    Article 

    Google Scholar 

  • Pastor-Satorras, R. & Vespignani, A. Epidemics and immunization in scale-free networks. In Handbook of Graphs and Networks, 111–130 (Wiley Online Library, 2002).

  • Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–359 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Shirley, M. D. & Rushton, S. P. The impacts of network topology on disease spread. Ecol. Complex. 2, 287–299 (2005).

    Article 

    Google Scholar 

  • Keeling, M. J. & Eames, K. T. Networks and epidemic models. J. R. Soc. Interface 2, 295–307 (2005).

    Article 

    Google Scholar 

  • Godfrey, S. S., Bull, C. M., James, R. & Murray, K. Network structure and parasite transmission in a group living lizard the gidgee skink, Egernia stokesii. Behav. Ecol. Sociobiol. 63, 1045–1056 (2009).

    Article 

    Google Scholar 

  • VanderWaal, K. L., Atwill, E. R., Hooper, S., Buckle, K. & McCowan, B. Network structure and prevalence of Cryptosporidium in Belding’s ground squirrels. Behav. Ecol. Sociobiol. 67, 1951–1959 (2013).

    Article 

    Google Scholar 

  • Proulx, S. R., Promislow, D. E. & Phillips, P. C. Network thinking in ecology and evolution. Trends Ecol. Evolut. 20, 345–353 (2005).

    Article 

    Google Scholar 

  • Craft, M. E. & Caillaud, D. Network models: An underutilized tool in wildlife epidemiology?. Interdiscip. Perspect. Infect. Dis. 2011, (2011).

  • Bajardi, P. et al. Human mobility networks, travel restrictions, and the global spread of 2009 h1n1 pandemic. PloS one 6, e16591 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gog, J. R. et al. Seven challenges in modeling pathogen dynamics within-host and across scales. Epidemics 10, 45–48 (2015).

    Article 

    Google Scholar 

  • Cen, X., Feng, Z. & Zhao, Y. Emerging disease dynamics in a model coupling within-host and between-host systems. J. Theor. Biol. 361, 141–151 (2014).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Meakin, S. R. & Keeling, M. J. Correlations between stochastic epidemics in two interacting populations. Epidemics 26, 58–67 (2019).

    Article 

    Google Scholar 

  • Machado, G. et al. Identifying outbreaks of porcine epidemic diarrhea virus through animal movements and spatial neighborhoods. Sci. Rep. 9, 1–12 (2019).

    Google Scholar 

  • Tonkin, J. D. et al. The role of dispersal in river network metacommunities: Patterns, processes, and pathways. Freshwater Biol. 63, 141–163 (2018).

    Article 

    Google Scholar 

  • Pedersen, T. L. tidygraph: a tidy API for graph manipulation (2019). R package version 1.1.2.

  • Rackauckas, C. & Nie, Q. Differentialequations.jl–a performant and feature-rich ecosystem for solving differential equations in Julia. J. Open Res. Softw. 5 (2017).

  • Rackauckas, C. & Nie, Q. Confederated modular differential equation APIS for accelerated algorithm development and benchmarking. Adv. Eng. Softw. 132, 1–6 (2019).

    Article 

    Google Scholar 

  • Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: A fresh approach to numerical computing. SIAM Rev. 59, 65–98 (2017).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

    MATH 
    Book 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2020).


  • Source: Ecology - nature.com

    The expansion of tree plantations across tropical biomes

    Study finds natural sources of air pollution exceed air quality guidelines in many regions