in

Chemoautotrophy, symbiosis and sedimented diatoms support high biomass of benthic molluscs in the Namibian shelf

  • Schulz, H. N. et al. Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284, 493–495. https://doi.org/10.1126/science.284.5413.493%JScience (1999).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Brüchert, V. et al. Biogeochemical and physical control on shelf anoxia and water column hydrogen sulphide in the Benguela coastal upwelling system off Namibia. In Past and Present Water Column Anoxia (ed. Neretin, L. N.) 161–193 (Springer, 2006).

    Chapter 

    Google Scholar 

  • Currie, B., Utne-Palm, A. C. & Salvanes, A. G. V. Winning ways with hydrogen sulphide on the Namibian shelf. Front. Mar. Sci. 5, 341. https://doi.org/10.3389/fmars.2018.00341 (2018).

    Article 

    Google Scholar 

  • Emeis, K. C. et al. Shallow gas in shelf sediments of the Namibian coastal upwelling ecosystem. Cont. Shelf Res. 24, 627–642 (2004).

    ADS 
    Article 

    Google Scholar 

  • Eisenbarth, S. & Zettler, M. L. Diversity of the benthic macrofauna off northern Namibia from the shelf to the deep sea. J. Mar. Syst. 155, 1–10 (2016).

    Article 

    Google Scholar 

  • Zettler, M. L., Bochert, R. & Pollehne, F. Macrozoobenthos diversity in an oxygen minimum zone off northern Namibia. Mar. Biol. 156, 1949–1961. https://doi.org/10.1007/s00227-009-1227-9 (2009).

    CAS 
    Article 

    Google Scholar 

  • Cary, S. C., Vetter, R. D. & Felbeck, H. Habitat characterization and nutritional strategies of the endosymbiont-bearing bivalve Lucinoma aequizonata. Mar. Ecol. Prog. Ser. 55, 31–45 (1989).

    ADS 
    Article 

    Google Scholar 

  • Le Pennec, M., Beninger, P. G. & Herry, A. Feeding and digestive adaptations of bivalve molluscs to sulphide-rich habitats. Comp. Biochem. Physiol. A Physiol. 111, 183–189. https://doi.org/10.1016/0300-9629(94)00211-B (1995).

    Article 

    Google Scholar 

  • Taylor, J. D. & Glover, E. A. Functional anatomy, chemosymbiosis and evolution of the Lucinidae. Geol. Soc. Lond. Spec. Publ. 177, 207–225. https://doi.org/10.1144/GSL.SP.2000.177.01.12 (2000).

    ADS 
    Article 

    Google Scholar 

  • Lim, S. J. et al. Extensive thioautotrophic gill endosymbiont diversity within a single Ctena orbiculata (Bivalvia: Lucinidae) population and implications for defining host-symbiont specificity and species recognition. MSystems 4, e00280. https://doi.org/10.1128/mSystems.00280-19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • König, S. et al. Nitrogen fixation in a chemoautotrophic lucinid symbiosis. Nat. Microbiol. 2, 16193. https://doi.org/10.1038/nmicrobiol.2016.193 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Petersen, J. M. et al. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat. Microbiol. 2, 16195. https://doi.org/10.1038/nmicrobiol.2016.195 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Osvatic, J. T. et al. Global biogeography of chemosynthetic symbionts reveals both localized and globally distributed symbiont groups. Proc. Natl. Acad. Sci. 118, e2104378118. https://doi.org/10.1073/pnas.2104378118 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lim, S. J. et al. Taxonomic and functional heterogeneity of the gill microbiome in a symbiotic coastal mangrove lucinid species. ISME J. 13, 902–920. https://doi.org/10.1038/s41396-018-0318-3 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Taylor, J., Glover, E. & Williams, S. Diversification of chemosymbiotic bivalves: Origins and relationships of deeper water Lucinidae. Biol. J. Lin. Soc. 111, 401–420. https://doi.org/10.1111/bij.12208 (2014).

    Article 

    Google Scholar 

  • Taylor, J. & Glover, E. Biology, Evolution and Generic Review of the Chemosymbiotic Bivalve Family Lucinidae (Ray Society, 2021).

    Google Scholar 

  • Nagel, B. et al. N-cycling and balancing of the N-deficit generated in the oxygen minimum zone over the Namibian shelf-An isotope-based approach. J. Geophys. Res. Biogeosci. 118, 361–371. https://doi.org/10.1002/jgrg.20040 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Neumann, A. & Flohr, A. The bivalve Lembulus bicuspidatus may enhance denitrification in shelf sediment at the Angola-Benguela Frontal Zone. Afr. J. Mar. Sci. 40, 91–96. https://doi.org/10.2989/1814232X.2018.1437774 (2018).

    Article 

    Google Scholar 

  • Sampaio, L., Rodrigues, A. M. & Quintino, V. Carbon and nitrogen stable isotopes in coastal benthic populations under multiple organic enrichment sources. Mar. Pollut. Bull. 60, 1790–1802. https://doi.org/10.1016/j.marpolbul.2010.06.003 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Sakko, A. L. The influence of the Benguela upwelling system on Namibia’s marine biodiversity. Biodivers. Conserv. 7, 419–433. https://doi.org/10.1023/A:1008867310010 (1998).

    Article 

    Google Scholar 

  • Levin, L. A., Mendoza, G. F., Konotchick, T. & Lee, R. Macrobenthos community structure and trophic relationships within active and inactive Pacific hydrothermal sediments. Deep Sea Res. II 56, 1632–1648. https://doi.org/10.1016/j.dsr2.2009.05.010 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Soto, L. A. Stable carbon and nitrogen isotopic signatures of fauna associated with the deep-sea hydrothermal vent system of Guaymas Basin, Gulf of California. Deep Sea Res. II 56, 1675–1682. https://doi.org/10.1016/j.dsr2.2009.05.013 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Weems, J., Iken, K., Gradinger, R. & Wooller, M. J. Carbon and nitrogen assimilation in the Bering Sea clams Nuculana radiata and Macoma moesta. J. Exp. Mar. Biol. Ecol. 430, 32–42. https://doi.org/10.1016/j.jembe.2012.06.015 (2012).

    CAS 
    Article 

    Google Scholar 

  • Ferrier-Pagès, C. & Leal, M. C. Stable isotopes as tracers of trophic interactions in marine mutualistic symbioses. Ecol. Evol. 9, 723–740. https://doi.org/10.1002/ece3.4712 (2019).

    Article 
    PubMed 

    Google Scholar 

  • DavySimon, K., Allemand, D. & WeisVirginia, M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–261. https://doi.org/10.1128/MMBR.05014-11 (2012).

    CAS 
    Article 

    Google Scholar 

  • Ferrier-Pagès, C. et al. Summer autotrophy and winter heterotrophy in the temperate symbiotic coral Cladocora caespitosa. Limnol. Oceanogr. 56, 1429–1438. https://doi.org/10.4319/lo.2011.56.4.1429 (2011).

    ADS 
    Article 

    Google Scholar 

  • Berg, C. J. & Alatalo, P. Potential of chemosynthesis in molluscan mariculture. Aquaculture 39, 165–179. https://doi.org/10.1016/0044-8486(84)90264-3 (1984).

    CAS 
    Article 

    Google Scholar 

  • Dando, P. R. & Southward, A. J. Chemoautotrophy in bivalve molluscs of the genus Thyasira. J. Mar. Biol. Assoc. U.K. 66, 915–929. https://doi.org/10.1017/S0025315400048529 (1986).

    CAS 
    Article 

    Google Scholar 

  • Spiro, B., Greenwood, P. B., Southward, A. J. & Dando, P. R. 13C/12C ratios in marine invertebrates from reducing sediments: Confirmation of nutritional importance of chemoautotrophic endosymbiotic bacteria. Mar. Ecol. Prog. Ser. 28, 233–240 (1986).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Fisher, C. R. Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev. Aquat. Sci. 2, 399–436 (1990).

    CAS 

    Google Scholar 

  • Duperron, S., Fiala-Medioni, A., Caprais, J. C., Olu, K. & Sibuet, M. Evidence for chemoautotrophic symbiosis in a Mediterranean cold seep clam (Bivalvia: Lucinidae): Comparative sequence analysis of bacterial 16S rRNA, APS reductase and RubisCO genes. FEMS Microbiol. Ecol. 59, 64–70. https://doi.org/10.1111/j.1574-6941.2006.00194.x (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zanzerl, H., Salvo, F., Jones, S. W. & Dufour, S. C. Feeding strategies in symbiotic and asymbiotic thyasirid bivalves. J. Sea Res. 145, 16–23. https://doi.org/10.1016/j.seares.2018.12.005 (2019).

    ADS 
    Article 

    Google Scholar 

  • Descolas-Gros, C. & Fontugne, M. R. Carbon fixation in marine phytoplankton: Carboxylase activities and stable carbon-isotope ratios; physiological and paleoclimatological aspects. Mar. Biol. 87, 1–6. https://doi.org/10.1007/BF00396999 (1985).

    CAS 
    Article 

    Google Scholar 

  • Brooks, J. M. et al. Deep-sea hydrocarbon seep communities: Evidence for energy and nutritional carbon sources. Science 238, 1138. https://doi.org/10.1126/science.238.4830.1138 (1987).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Conway, N., Capuzzo, J. M. & Fry, B. The role of endosymbiotic bacteria in the nutrition of Solemya velum: Evidence from a stable isotope analysis of endosymbionts and host. Limnol. Oceanogr. 34, 249–255. https://doi.org/10.4319/lo.1989.34.1.0249 (1989).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Conway, N. M., Howes, B. L., McDowell Capuzzo, J. E., Turner, R. D. & Cavanaugh, C. M. Characterization and site description of Solemya borealis (Bivalvia; Solemyidae), another bivalve-bacteria symbiosis. Mar. Biol. 112, 601–613. https://doi.org/10.1007/BF00346178 (1992).

    Article 

    Google Scholar 

  • Rau, G. H. Low 15N/14N in hydrothermal vent animals: Ecological implications. Nature 289, 484. https://doi.org/10.1038/289484a0 (1981).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kennicutt, M. C. et al. Stable isotope partitioning in seep and vent organisms: Chemical and ecological significance. Chem. Geol. Isot. Geosci. Sect. 101, 293–310. https://doi.org/10.1016/0009-2541(92)90009-T (1992).

    CAS 
    Article 

    Google Scholar 

  • Lee, R. W. & Childress, J. J. Assimilation of inorganic nitrogen by marine invertebrates and their chemoautotrophic and methanotrophic symbionts. Appl. Environ. Microbiol. 60, 1852–1858. https://doi.org/10.1128/AEM.60.6.1852-1858.1994 (1994).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140. https://doi.org/10.1016/0016-7037(84)90204-7 (1984).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Zanden, M. J. V. & Rasmussen, J. B. Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 46, 2061–2066. https://doi.org/10.4319/lo.2001.46.8.2061 (2001).

    ADS 
    Article 

    Google Scholar 

  • Nagel, B., Gaye, B., Lahajnar, N., Struck, U. & Emeis, K.-C. Effects of current regimes and oxygenation on particulate matter preservation on the Namibian shelf: Insights from amino acid biogeochemistry. Mar. Chem. 186, 121–132. https://doi.org/10.1016/j.marchem.2016.09.001 (2016).

    CAS 
    Article 

    Google Scholar 

  • Holmes, M. E. et al. Stable nitrogen isotopes in Angola Basin surface sediments. Mar. Geol. 134, 1–12. https://doi.org/10.1016/0025-3227(96)00031-X (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 (2002).

    Article 

    Google Scholar 

  • McClelland, J. W. & Montoya, J. P. Trophic relationships and the nitrogen isotopic composition of amino acids in plankton. Ecology 83, 2173–2180 (2002).

    Article 

    Google Scholar 

  • Chikaraishi, Y. et al. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. Methods 7, 740–750. https://doi.org/10.4319/lom.2009.7.740 (2009).

    CAS 
    Article 

    Google Scholar 

  • Glibert, P. M., Middelburg, J. J., McClelland, J. W. & Jake Vander Zanden, M. Stable isotope tracers: Enriching our perspectives and questions on sources, fates, rates, and pathways of major elements in aquatic systems. Limnol. Oceanogr. 64, 950–981. https://doi.org/10.1002/lno.11087 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Mompeán, C., Bode, A., Gier, E. & McCarthy, M. D. Bulk vs amino acid stable N isotope estimations of metabolic status and contributions of nitrogen fixation to size-fractionated zooplankton biomass in the subtropical N Atlantic. Deep Sea Res. I 114, 137–148. https://doi.org/10.1016/j.dsr.2016.05.005 (2016).

    CAS 
    Article 

    Google Scholar 

  • Steinkopf, M. Trophische Strukturen des Mesozooplanktons im Benguela Auftriebsgebiet vor Namibia (Universität Rostock, 2018).

    Google Scholar 

  • Sigman, D. & Fripiat, F. Nitrogen isotopes in the Ocean. In Encyclopedia of Ocean Sciences 3rd edn, Vol. 263 (eds Cochran, J. K. et al.) 268 (Academic Press, 2019).

    Google Scholar 

  • Nagel, B. et al. Nutrients and δ15N measured in water samples in the oxygen minimum zone over the Namibian shelf during the Meteor campaign M76–2 in 2008. PANGAEA. https://doi.org/10.1594/PANGAEA.892369 (2018).

  • Granger, J., Sigman, D. M., Rohde, M. M., Maldonado, M. T. & Tortell, P. D. N and O isotope effects during nitrate assimilation by unicellular prokaryotic and eukaryotic plankton cultures. Geochim. Cosmochim. Acta 74, 1030–1040 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Prokopenko, M. G., Hammond, D. E. & Stott, L. Lack of isotopic fractionation of δ 15N of organic matter during long-term diagenesis in marine sediments, ODP Leg 202, Sites 1234 and 1235. In Proc. Ocean Drilling Program(eds. R. Tiedemann, A. C. Mix, C. Richter and W. F. Ruddiman) 22 (2006).

  • Prokopenko, M. G. et al. Nitrogen cycling in the sediments of Santa Barbara basin and Eastern Subtropical North Pacific: Nitrogen isotopes, diagenesis and possible chemosymbiosis between two lithotrophs (Thioploca and Anammox)—“Riding on a glider”. Earth Planet. Sci. Lett. 242, 186–204 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Robinson, R. S. et al. A review of nitrogen isotopic alteration in marine sediments. Paleoceanography 27, 4203. https://doi.org/10.1029/2012PA002321 (2012).

    ADS 
    Article 

    Google Scholar 

  • Hoch, M. P., Fogel, M. L. & Kirchman, D. L. Isotope fractionation during ammonium uptake by marine microbial assemblages. Geomicrobiol. J. 12, 113–127. https://doi.org/10.1080/01490459409377977 (1994).

    CAS 
    Article 

    Google Scholar 

  • Grasshoff, K. et al. (eds) Methods of Seawater Analysis 3rd edn. (Wiley, 2009).

    Google Scholar 

  • Hofmann, D., Gehre, M. & Jung, K. Sample preparation techniques for the determination of natural 15N/14N variations in amino acids by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Isot. Environ. Health Stud. 39, 233–244. https://doi.org/10.1080/1025601031000147630 (2003).

    CAS 
    Article 

    Google Scholar 

  • Veuger, B., Middelburg, J. J., Boschker, H. T. S. & Houtekamer, M. Analysis of 15N incorporation into D-alanine: A new method for tracing nitrogen uptake by bacteria. Limnol. Oceanogr. Methods 3, 230–240. https://doi.org/10.4319/lom.2005.3.230 (2005).

    CAS 
    Article 

    Google Scholar 

  • Loick-Wilde, N. et al. Stratification, nitrogen fixation, and cyanobacterial bloom stage regulate the planktonic food web structure. Glob. Change Biol. 25, 794–810. https://doi.org/10.1111/gcb.14546 (2019).

    ADS 
    Article 

    Google Scholar 

  • Chikaraishi, Y., Ogawa, N. O., Doi, H. & Ohkouchi, N. 15N/14N ratios of amino acids as a tool for studying terrestrial food webs: A case study of terrestrial insects (bees, wasps, and hornets). Ecol. Res. 26, 835–844. https://doi.org/10.1007/s11284-011-0844-1 (2011).

    Article 

    Google Scholar 

  • Chikaraishi, Y. et al. High-resolution food webs based on nitrogen isotopic composition of amino acids. Ecol. Evol. 4, 2423–2449. https://doi.org/10.1002/ece3.1103 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eglite, E. et al. Strategies of amino acid supply in mesozooplankton during cyanobacteria blooms: A stable nitrogen isotope approach. Ecosphere 9, e02135. https://doi.org/10.1002/ecs2.2135 (2018).

    Article 

    Google Scholar 

  • Fujii, T. et al. Organic carbon and nitrogen isoscapes of reef corals and algal symbionts: Relative influences of environmental gradients and heterotrophy. Microorganisms 8, 1221. https://doi.org/10.3390/microorganisms8081221 (2020).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • Ferrier-Pagès, C. et al. Tracing the trophic plasticity of the coral–dinoflagellate symbiosis using amino acid compound-specific stable isotope analysis. Microorganisms 9, 182. https://doi.org/10.3390/microorganisms9010182 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hannides, C. C. S., Popp, B. N., Landry, M. R. & Graham, B. S. Quantification of zooplankton trophic position in the North Pacific Subtropical Gyre using stable nitrogen isotopes. Limnol. Oceanogr. 54, 50–61. https://doi.org/10.4319/lo.2009.54.1.0050 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Maeda, T. et al. Algivore or phototroph? Plakobranchus ocellatus (Gastropoda) continuously acquires kleptoplasts and nutrition from multiple algal species in nature. PLoS ONE 7, e42024. https://doi.org/10.1371/journal.pone.0042024 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pjevac, P. et al. An economical and flexible dual barcoding, two-step PCR approach for highly multiplexed amplicon sequencing. Front. Microbiol. 12, 1069 (2021).

    Article 

    Google Scholar 

  • Brettin, T. et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 5, 8365. https://doi.org/10.1038/srep08365 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steffan, S. A. et al. Unpacking brown food-webs: Animal trophic identity reflects rampant microbivory. Ecol. Evol. 7, 3532–3541. https://doi.org/10.1002/ece3.2951 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robinson, J. J. & Cavanaugh, C. M. Expression of form I and form II Rubisco in chemoautotrophic symbioses: Implications for the interpretation of stable carbon isotope values. Limnol. Oceanogr. 40, 1496–1502. https://doi.org/10.4319/lo.1995.40.8.1496 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Fry, B. Stable Isotope Ecology (Springer, 2006).

    Book 

    Google Scholar 

  • Emeis, K. et al. pCO2 underway data from the Benguela upwelling system in southeastern South Atlantic Ocean. PANGAEA. https://doi.org/10.1594/PANGAEA.880406 (2017).

  • Mook, W. G., Bommerson, J. C. & Staverman, W. H. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett. 22, 169–176 (1974).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Goericke, R., Montoya, J. & Fry, B. Physiology and isotopic fractionation in algae and cyanobacteria. In Stable Isotopes in Ecology and Environmental Science (eds Kajtah, K. & Michener, R. H.) 187–221 (Blackwell, 1994).

    Google Scholar 

  • Duplessis, M. R., Dufour, S. C., Blankenship, L. E., Felbeck, H. & Yayanos, A. A. Anatomical and experimental evidence for particulate feeding in Lucinoma aequizonata and Parvilucina tenuisculpta (Bivalvia: Lucinidae) from the Santa Barbara Basin. Mar. Biol. 145, 551–561. https://doi.org/10.1007/s00227-004-1350-6 (2004).

    Article 

    Google Scholar 

  • Lopez, G. R. & Levinton, J. S. Ecology of deposit-feeding animals in marine Sediments. Q. Rev. Biol. 62, 235–260. https://doi.org/10.1086/415511 (1987).

    Article 

    Google Scholar 

  • Brüchert, V. et al. Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone. Geochim. Cosmochim. Acta 67, 4505–4518 (2003).

    ADS 
    Article 

    Google Scholar 

  • Schukat, A., Auel, H., Teuber, L., Lahajnar, N. & Hagen, W. Complex trophic interactions of calanoid copepods in the Benguela upwelling system. J. Sea Res. 85, 186–196. https://doi.org/10.1016/j.seares.2013.04.018 (2014).

    ADS 
    Article 

    Google Scholar 

  • McCarthy, M. D., Benner, R., Lee, C. & Fogel, M. L. Amino acid nitrogen isotopic fractionation patterns as indicators of heterotrophy in plankton, particulate, and dissolved organic matter. Geochim. Cosmochim. Acta 71, 4727–4744. https://doi.org/10.1016/j.gca.2007.06.061 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Zbinden, M. et al. Epsilonproteobacteria as gill epibionts of the hydrothermal vent gastropod Cyathermia naticoides (North East-Pacific Rise). Mar. Biol. 162, 435–448. https://doi.org/10.1007/s00227-014-2591-7 (2015).

    CAS 
    Article 

    Google Scholar 

  • Whitlatch, R. B. & Obrebski, S. Feeding selectivity and coexistence in two deposit-feeding gastropods. Mar. Biol. 58, 219–225. https://doi.org/10.1007/BF00391879 (1980).

    Article 

    Google Scholar 

  • Connor, M. S. & Robert, K. E. Selective grazing by the mud snail Ilyanassa obsoleta. Oecologia 53, 271–275 (1982).

    ADS 
    Article 

    Google Scholar 

  • Feller, R. J. Dietary immunoassay of Ilyanassa obsoleta, the eastern mud snail. Biol. Bull. 166, 96–102. https://doi.org/10.2307/1541433 (1984).

    Article 

    Google Scholar 

  • Kelaher, B. P., Levinton, J. S. & Matthew Hoch, J. Foraging by the mud snail, Ilyanassa obsoleta (Say), modulates spatial variation in benthic community structure. J. Exp. Mar. Biol. Ecol. 292, 139–157. https://doi.org/10.1016/S0022-0981(03)00183-7 (2003).

    Article 

    Google Scholar 

  • Montoya, J. P. Natural abundance of 15N in marine planktonic ecosystems. In Stable Isotopes in Ecology and Environmental Science (eds Michener, R. & Lajtha, K.) 176–201 (Blackwell Publishing Ltd, 2007).

    Chapter 

    Google Scholar 

  • Checkley, D. M. & Miller, C. A. Nitrogen isotope fractionation by oceanic zooplankton. Deep Sea Res. A Oceanogr. Res. Pap. 36, 1449–1456. https://doi.org/10.1016/0198-0149(89)90050-2 (1989).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Nelson, D. C. & Fisher, C. R. Chemoautotrophic and methanotrophic endosymbiotic bacteria at deep-sea vents and seeps. In The Microbiology of Deep-Sea Hydrothermal Vents (ed. Karl, D. M.) 125–167 (CRC Press, 1995).

    Google Scholar 

  • Cardini, U. et al. Chemosymbiotic bivalves contribute to the nitrogen budget of seagrass ecosystems. ISME J. 13, 3131–3134. https://doi.org/10.1038/s41396-019-0486-9 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, R. W., Robinson, J. J. & Cavanaugh, C. M. Pathways of inorganic nitrogen assimilation in chemoautotrophic bacteria-marine invertebrate symbioses: Expression of host and symbiont glutamine synthetase. J. Exp. Biol. 202, 289 (1999).

    CAS 
    Article 

    Google Scholar 

  • Hentschel, U. & Felbeck, H. Nitrate respiration in chemoautotrophic symbionts of the bivalve Lucinoma aequizonata is not regulated by oxygen. Appl. Environ. Microbiol. 61, 1630–1633 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Sacks, L. E. & Barker, H. A. The influence of oxygen on nitrate and nitrite reduction. J. Bacteriol. 58, 11–22. https://doi.org/10.1128/JB.58.1.11-22.1949 (1949).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Helping renewable energy projects succeed in local communities

    Could used beer yeast be the solution to heavy metal contamination in water?