in

Utilisation of Oxford Nanopore sequencing to generate six complete gastropod mitochondrial genomes as part of a biodiversity curriculum

  • Rasmussen, R. S. & Morrissey, M. T. Application of DNA-based methods to identify fish and seafood substitution on the commercial market. Compr. Rev. Food Sci. Food Saf. 8, 118–154 (2009).

    CAS 
    Article 

    Google Scholar 

  • Chiu, M.-C., Huang, C.-G., Wu, W.-J. & Shiao, S.-F. A new horsehair worm, Chordodes formosanus sp. N. (Nematomorpha, Gordiida) from Hierodula mantids of Taiwan and Japan with redescription of a closely related species, Chordodes japonensis. ZooKeys 160, 1–22 (2011).

    Article 

    Google Scholar 

  • Robins, J. H. et al. Phylogenetic species identification in Rattus highlights rapid radiation and morphological similarity of new Guinean species. PLoS One 9, e98002. https://doi.org/10.1371/journal.pone.0098002 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sutherland, W. J., Roy, D. B. & Amano, T. An agenda for the future of biological recording for ecological monitoring and citizen science. Biol. J. Linn. Soc. 115, 779–784 (2015).

    Article 

    Google Scholar 

  • Ho, J. K. I., Puniamoorthy, J., Srivathsan, A. & Meier, R. MinION sequencing of seafood in Singapore reveals creatively labelled flatfishes, confused roe, pig DNA in squid balls, and phantom crustaceans. Food Control 112, 107144. https://doi.org/10.1016/j.foodcont.2020.107144 (2020).

    CAS 
    Article 

    Google Scholar 

  • Elson, J. & Lightowlers, R. Mitochondrial DNA clonality in the dock: Can surveillance swing the case?. Trends Genet. 22, 603–607 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bernt, M., Braband, A., Schierwater, B. & Stadler, P. F. Genetic aspects of mitochondrial genome evolution. Mol. Phylogenet. Evol. 69, 328–338 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Blaxter, M. L. The promise of a DNA taxonomy. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 669–679 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Waugh, J. DNA barcoding in animal species: progress, potential and pitfalls. BioEssays 29, 188–197 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Grandjean, F. et al. Rapid recovery of nuclear and mitochondrial genes by genome skimming from Northern Hemisphere freshwater crayfish. Zool. Scr. 46, 718–728 (2017).

    Article 

    Google Scholar 

  • Trevisan, B., Alcantara, D. M. C., Machado, D. J., Marques, F. P. L. & Lahr, D. J. G. Genome skimming is a low-cost and robust strategy to assemble complete mitochondrial genomes from ethanol preserved specimens in biodiversity studies. PeerJ 7, e7543. https://doi.org/10.7717/peerj.7543 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Franco-Sierra, N. D. & Díaz-Nieto, J. F. Rapid mitochondrial genome sequencing based on Oxford Nanopore Sequencing and a proxy for vertebrate species identification. Ecol. Evol. 10, 3544–3560 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Baeza, J. A. Yes, we can use it: a formal test on the accuracy of low-pass nanopore long-read sequencing for mitophylogenomics and barcoding research using the Caribbean spiny lobster Panulirus argus. BMC Genomics 21, 882. https://doi.org/10.1186/s12864-020-07292-5 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Phillips, A. R., Robertson, A. L., Batzli, J., Harris, M. & Miller, S. Aligning goals, assessments, and activities: An approach to teaching PCR and gel electrophoresis. CBE Life Sci. Educ. 7, 96–106 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dhorne-Pollet, S., Barrey, E. & Pollet, N. A new method for long-read sequencing of animal mitochondrial genomes: application to the identification of equine mitochondrial DNA variants. BMC Genomics 21, 785. https://doi.org/10.1186/s12864-020-07183-9 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jain, M., Olsen, H. E., Paten, B. & Akeson, M. The Oxford Nanopore MinION: Delivery of nanopore sequencing to the genomics community. Genome Biol. 17, 239. https://doi.org/10.1186/s13059-016-1103-0 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krehenwinkel, H. et al. Nanopore sequencing of long ribosomal DNA amplicons enables portable and simple biodiversity assessments with high phylogenetic resolution across broad taxonomic scale. GigaScience 8, giz006. https://doi.org/10.1093/gigascience/giz006 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Srivathsan, A. et al. ONTbarcoder and MinION barcodes aid biodiversity discovery and identification by everyone, for everyone. BMC Biol. 19, 217. https://doi.org/10.1186/s12915-021-01141-x (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prost, S. et al. Education in the genomics era: Generating high-quality genome assemblies in university courses. GigaScience 9, giaa058. https://doi.org/10.1093/gigascience/giaa058 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salazar, A. N. et al. An educational guide for nanopore sequencing in the classroom. PLoS Comput. Biol. 16, e1007314. https://doi.org/10.1371/journal.pcbi.1007314 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Watsa, M., Erkenswick, G. A., Pomerantz, A. & Prost, S. Portable sequencing as a teaching tool in conservation and biodiversity research. PLoS Biol. 18, e3000667. https://doi.org/10.1371/journal.pbio.3000667 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Egeter, B. et al. Speeding up the detection of invasive bivalve species using environmental DNA: A Nanopore and Illumina sequencing comparison. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13610 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Oxford Nanopore. Flongle. https://nanoporetech.com/products/flongle. Last accessed 05 May 2022 (2022).

  • Oxford Nanopore. MinION. https://nanoporetech.com/products/minion. Last accessed 05 May 2022 (2022).

  • Baeza, J. A. & García-De León, F. J. Are we there yet? Benchmarking low-coverage nanopore long-read sequencing for the assembling of mitochondrial genomes using the vulnerable silky shark Carcharhinus falciformis. BMC Genomics 23, 320. https://doi.org/10.1186/s12864-022-08482-z (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghiselli, F. et al. Molluscan mitochondrial genomes break the rules. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200159. https://doi.org/10.1098/rstb.2020.0159 (2021).

    Article 

    Google Scholar 

  • Zhang, Z.-Q. Animal biodiversity: An introduction to higher-level classification and taxonomic richness. Zootaxa 3148, 7–12 (2011).

    Article 

    Google Scholar 

  • Bouchet, P., Bary, S., Héros, V. & Marani, G. How many species of molluscs are there in the world’s oceans, and who is going to describe them? In Tropical Deep-Sea Benthos 29 (eds Héros, V. et al.) 9–24 (Muséum national d’histoire naturelle, 2016).

    Google Scholar 

  • Reese, D. S. Palaikastro shells and bronze age purple-dye production in the Mediterranean Basin. Annu. Br. Sch. Athens 82, 201–206 (1987).

    Article 

    Google Scholar 

  • Lardans, V. & Dissous, C. Snail control strategies for reduction of schistosomiasis transmission. Parasitol. Today 14, 413–417 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Baker, G. M. (ed.) Molluscs as Crop Pests. (CABI, 2002). https://doi.org/10.1079/9780851993201.0000

  • Mannino, M. A. & Thomas, K. D. Depletion of a resource? The impact of prehistoric human foraging on intertidal mollusc communities and its significance for human settlement, mobility and dispersal. World Archaeol. 33, 452–474 (2002).

    Article 

    Google Scholar 

  • Carter, R. The history and prehistory of pearling in the Persian Gulf. J. Econ. Soc. Hist. Orient 48, 139–209 (2005).

    Article 

    Google Scholar 

  • Vilariño, M. L. et al. Assessment of human enteric viruses in cultured and wild bivalve molluscs. Int. Microbiol. Off. J. Span. Soc. Microbiol. 12, 145–151 (2009).

    Google Scholar 

  • Tedde, T. et al. Toxoplasma gondii and other zoonotic protozoans in Mediterranean mussel (Mytilus galloprovincialis) and blue mussel (Mytilus edulis): A food safety concern?. J. Food Prot. 82, 535–542 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 44, D67–D72 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Grande, C., Templado, J. & Zardoya, R. Evolution of gastropod mitochondrial genome arrangements. BMC Evol. Biol. 8, 61. https://doi.org/10.1186/1471-2148-8-61 (2008).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Formenti, G. et al. Complete vertebrate mitogenomes reveal widespread repeats and gene duplications. Genome Biol. 22, 120. https://doi.org/10.1186/s13059-021-02336-9 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Meng, G., Li, Y., Yang, C. & Liu, S. MitoZ: A toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 47, e63. https://doi.org/10.1093/nar/gkz173 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bernt, M. et al. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313–319 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Chaisson, M. J. P., Wilson, R. K. & Eichler, E. E. Genetic variation and the de novo assembly of human genomes. Nat. Rev. Genet. 16, 627–640 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Alexander, J. & Valdés, A. The ring doesn’t mean a thing: Molecular data suggest a new taxonomy for two pacific species of sea hares (Mollusca: Opisthobranchia, Aplysiidae). Pac. Sci. 67, 283–294 (2013).

    Article 

    Google Scholar 

  • WoRMS Editorial Board. World Register of Marine Species. https://www.marinespecies.org at VLIZ. Accessed 10 Jan 2022 (2022).

  • Barco, A. et al. A molecular phylogenetic framework for the Muricidae, a diverse family of carnivorous gastropods. Mol. Phylogenet. Evol. 56, 1025–1039 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Houart, R. Description of eight new species and one new genus of Muricidae (Gastropoda) from the Indo-West Pacific. Novapex 18, 81–103 (2017).

    Google Scholar 

  • Shao, K.-T. & Chung, K.-F. The National Checklist of Taiwan (Catalogue of Life in Taiwan, TaiCoL). GBIF. https://www.gbif.org/dataset/1ec61203-14fa-4fbd-8ee5-a4a80257b45a (2021).

  • Gaitán-Espitia, J. D., González-Wevar, C. A., Poulin, E. & Cardenas, L. Antarctic and sub-Antarctic Nacella limpets reveal novel evolutionary characteristics of mitochondrial genomes in Patellogastropoda. Mol. Phylogenet. Evol. 131, 1–7 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Feng, J. et al. Comparative analysis of the complete mitochondrial genomes in two limpets from Lottiidae (Gastropoda: Patellogastropoda): rare irregular gene rearrangement within Gastropoda. Sci. Rep. 10, 19277. https://doi.org/10.1038/s41598-020-76410-w (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, T., Qi, L., Kong, L. & Li, Q. Mitogenomics reveals phylogenetic relationships of Patellogastropoda (Mollusca, Gastropoda) and dynamic gene rearrangements. Zool. Scr. 51, 147–160 (2022).

    Article 

    Google Scholar 

  • Ranjard, L. et al. Complete mitochondrial genome of the green-lipped mussel, Perna canaliculus (Mollusca: Mytiloidea), from long nanopore sequencing reads. Mitoch. DNA Part B 3, 175–176 (2018).

    Article 

    Google Scholar 

  • Sun, J. et al. The Scaly-foot Snail genome and implications for the origins of biomineralised armour. Nat. Commun. 11, 1657. https://doi.org/10.1038/s41467-020-15522-3 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dixit, B., Vanhoozer, S., Anti, N. A., O’Connor, M. S. & Boominathan, A. Rapid enrichment of mitochondria from mammalian cell cultures using digitonin. MethodsX 8, 101197. https://doi.org/10.1016/j.mex.2020.101197 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Wanner, N., Larsen, P. A., McLain, A. & Faulk, C. The mitochondrial genome and Epigenome of the Golden lion Tamarin from fecal DNA using Nanopore adaptive sequencing. BMC Genomics 22, 726. https://doi.org/10.1186/s12864-021-08046-7 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Malukiewicz, J. et al. Genomic skimming and nanopore sequencing uncover cryptic hybridization in one of world’s most threatened primates. Sci. Rep. 11, 17279. https://doi.org/10.1038/s41598-021-96404-6 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kipp, E. J. et al. Nanopore adaptive sampling for mitogenome sequencing and bloodmeal identification in hematophagous insects. bioRxiv. https://doi.org/10.1101/2021.11.11.468279 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sereika, M. et al. Oxford Nanopore R10.4 long-read sequencing enables near-perfect bacterial genomes from pure cultures and metagenomes without short-read or reference polishing. bioRxiv. https://doi.org/10.1101/2021.10.27.466057 (2021).

    Article 

    Google Scholar 

  • Oxford Nanopore. Nanopore Community. https://nanoporetech.com/community. Last accessed 05 May 2022 (2022).

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Oxford Nanopore. medaka. https://github.com/nanoporetech/medaka. Last accessed 05 May 2022 (2022).

  • Walker, B. J. et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9, e112963. https://doi.org/10.1371/journal.pone.0112963 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Faust, G. G. & Hall, I. M. SAMBLASTER: Fast duplicate marking and structural variant read extraction. Bioinformatics 30, 2503–2505 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pedersen, B. S. & Quinlan, A. R. Mosdepth: Quick coverage calculation for genomes and exomes. Bioinformatics 34, 867–868 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tsai, I. J. Genome skimming exercise (last updated 2022.04.14). https://introtogenomics.readthedocs.io/en/latest/emcgs.html (2022).

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Edler, D., Klein, J., Antonelli, A. & Silvestro, D. raxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods Ecol. Evol. 12, 373–377 (2021).

    Article 

    Google Scholar 

  • Rabiee, M., Sayyari, E. & Mirarab, S. Multi-allele species reconstruction using ASTRAL. Mol. Phylogenet. Evol. 130, 286–296 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Rambaut, A. FigTree, version 1.4.4. http://tree.bio.ed.ac.uk/software/figtree/ (2018).

  • Hackl, T. & Ankenbrand, M. J. gggenomes: A Grammar of Graphics for Comparative Genomics. https://github.com/thackl/gggenomes (2022).

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Convergent evolution of a labile nutritional symbiosis in ants

    Evan Leppink: Seeking a way to better stabilize the fusion environment