Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., Davis, A., Dean, J., Devin, M., Ghemawat, S. & Zheng, X. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org. (2015).
Alberdi, A., Aizpurua, O., Gilbert, M. T. P. & Bohmann, K. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods Ecol. Evol. 9, 134–147 (2018).
Google Scholar
Albert, J. S. & Reis, R. E. One. Introduction to Neotropical freshwaters. In Historical biogeography of Neotropical freshwater fishes (pp. 3-20). University of California Press. (2011).
Allard, L., Popée, M., Vigouroux, R. & Brosse, S. Effect of reduced impact logging and small-scale mining disturbances on Neotropical stream fish assemblages. Aquat. Sci. 78, 315–325 (2016).
Google Scholar
Berry, O. et al. Making environmental DNA (eDNA) biodiversity records globally accessible. Environ. DNA 3(4), 699–705 (2020).
Google Scholar
Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29(6), 358–367 (2014).
Google Scholar
Bolyen, E. et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. Nat. Biotechnol. 32, 852–857 (2019).
Google Scholar
Bonder, M. J., Abeln, S., Zaura, E. & Brandt, B. W. Comparing clustering and pre-processing in taxonomy analysis. Bioinformatics 28(22), 2891–2897 (2012).
Google Scholar
Boussarie, G. et al. Environmental DNA illuminates the dark diversity of sharks. Sci. Adv. 4, eaap9661 (2018).
Google Scholar
Boyer, F. et al. obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecology Resour. 16(1), 176–182 (2016).
Google Scholar
Brandt, M.I., Trouche, B., Quintric, L., Günther, B., Wincker, P., Poulain, J. & Arnaud-Haond, S. Bioinformatic pipelines combining denoising and clustering tools allow for more comprehensive prokaryotic and eukaryotic metabarcoding. Molecular Ecology Resources. Accepted (2021).
Brosse, S., Melki, F. & Vigouroux, R. Fishes from the Mitaraka mountains (French Guiana). Zoosystema 41, 131–151 (2019).
Google Scholar
Brown, E. A., Chain, F. J., Crease, T. J., MacIsaac, H. J. & Cristescu, M. E. Divergence thresholds and divergent biodiversity estimates: can metabarcoding reliably describe zooplankton communities?. Ecol. Evol. 5(11), 2234–2251 (2015).
Google Scholar
Busia, K., George, D. E., Fannjiang, C., Alexander, D.H., Dorfman, E., Poplin, R., Chang, P., & DePris, M. A deep learning approach to pattern recognition for short DNA sequences. BioRxiv (2020).
Bylemans, J., Gleeson, D. M., Hardy, C. M. & Furlan, E. Toward an ecoregion scale evaluation of eDNA metabarcoding primers: A case study for the freshwater fish biodiversity of the Murray-Darling Basin (Australia). Ecol. Evol. 8(17), 8697–8712 (2018).
Google Scholar
Calderón-Sanou, I., Münkemüller, T., Boyer, F., Zinger, L. & Thuiller, W. From environmental DNA sequences to ecological conclusions: How strong is the influence of methodological choices?. J. Biogeogr. 47(1), 193–206 (2020).
Google Scholar
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13(7), 581–583 (2016).
Google Scholar
Cantera, I., Coutant, O., Jézéuel, C., Decotte, J.B., Dejean, T., Vigouroux, R., Valentini, A. Murienne, J. & Brosse S. Slight deforestation causes harsh biodiversity decline in Amazonian rivers (submitted)
Cantera, I., Decotte, J. B., Dejean, T., Murienne, J., Vigouroux, R., Valentini, A., & Brosse, S. Characterizing the spatial signal of environmental DNA in river systems using a community ecology approach. BioRxiv (2020).
Cantera, I. et al. Optimizing environmental DNA sampling effort for fish inventories in tropical streams and rivers. Sci. Rep. 9(1), 1–1 (2019).
Google Scholar
Cardoso, Y. P. & Montoya-Burgos, J. I. Unexpected diversity in the catfish Pseudancistrus brevispinis reveals dispersal routes in a Neotropical center of endemism: The Guyanas Region. Mol. Ecol. 18, 947–964 (2009).
Google Scholar
Cilleros, K. et al. Unlocking biodiversity and conservation studies in high-diversity environments using environmental DNA (eDNA): A test with Guianese freshwater fishes. Mol. Ecol. Resour. 19(1), 27–46 (2019).
Google Scholar
Collen, B., Ram, M., Zamin, T. & McRae, L. The tropical biodiversity data gap: Addressing disparity in global monitoring. Trop. Conserv. Sci. 1(2), 75–88 (2008).
Google Scholar
Cordier, T., Lanzén, A., Apothéloz-Perret-Gentil, L., Stoeck, T. & Pawlowski, J. Embracing environmental genomics and machine learning for routine biomonitoring. Trends Microbiol. 27(5), 387–397 (2019).
Google Scholar
Cordier, T. et al. Ecosystems monitoring powered by environmental genomics: A review of current strategies with an implementation roadmap. Mol. Ecol. 30(13), 2937–2958 (2020).
Google Scholar
Coutant, O. et al. Detecting fish assemblages with environmental DNA: Does protocol matter? Testing eDNA metabarcoding method robustness. Environ. DNA 3(3), 619–630 (2020).
Google Scholar
Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26(21), 5872–5895 (2017).
Google Scholar
Deneu, B., Servajean, M., Bonnet, P., Botella, C., Munoz, F., & Joly, A. Convolutional neural networks improve species distribution modelling by capturing the spatial structure of the environment. PLoS Comput. Biol. (in press) (2021).
de Mérona, B., Tejerina-Garro, F. L. & Vigouroux, R. Fish-habitat relationships in French Guiana rivers: A review. Cybium 36, 7–15 (2012).
DiBattista, J. D. et al. Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems. Sci. Rep. 10(1), 1–15 (2020).
Google Scholar
Dornelas, M., Madin, E. M., Bunce, M., DiBattista, J. D., Johnson, M., Madin, J. S., Magurran, A. E., McGill, B. J., Pettorelli, N., Pizarro, O. & Williams, S. B. Towards a macroscope: Leveraging technology to transform the breadth, scale and resolution of macroecological data. Glob. Ecol. Biogeogr. (2019).
Dufresne, Y., Lejzerowicz, F., Perret-Gentil, L. A., Pawlowski, J. & Cordier, T. SLIM: A flexible web application for the reproducible processing of environmental DNA metabarcoding data. BMC Bioinform. 20(1), 1–6 (2019).
Google Scholar
Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4(4), 423–425 (2008).
Google Scholar
Ficetola, G. F., Taberlet, P. & Coissac, E. How to limit false positives in environmental DNA and metabarcoding?. Mol. Ecol. Resour. 16(3), 604–607 (2016).
Google Scholar
Ficetola, G. F. et al. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol. Ecology Resour. 15(3), 543–556 (2015).
Google Scholar
Flynn, J. M., Brown, E. A., Chain, F. J., MacIsaac, H. J. & Cristescu, M. E. Toward accurate molecular identification of species in complex environmental samples: Testing the performance of sequence filtering and clustering methods. Ecol. Evol. 5(11), 2252–2266 (2015).
Google Scholar
Gold, Z. et al. eDNA metabarcoding bioassessment of endangered fairy shrimp (Branchinecta spp.). Conserv. Genet. Resour. 12, 685–690 (2020).
Google Scholar
Grünig, M., Razavi, E., Calanca, P., Mazzi, D., Wegner, J. D., & Pellissier, L. Applying deep neural networks to predict incidence and phenology of plant pests and diseases. Ecosphere (accepted) (2021).
Helaly, M. A., Rady, S., & Aref, M. M. Convolutional neural networks for biological sequence taxonomic classification: A comparative study. In International Conference on Advanced Intelligent Systems and Informatics (pp. 523–533). Springer, Cham (2019).
Holman, L. E. et al. Animals, protists and bacteria share marine biogeographic patterns. Nat. Ecol. Evol. 5(6), 738–746 (2021).
Google Scholar
Iknayan, K. J., Tingley, M. W., Furnas, B. J. & Beissinger, S. R. Detecting diversity: Emerging methods to estimate species diversity. Trends Ecol. Evol. 29(2), 97–106 (2014).
Google Scholar
Jarman, S. N., Berry, O. & Bunce, M. The value of environmental DNA biobanking for long-term biomonitoring. Nat. Ecol. Evol. 2(8), 1192–1193 (2018).
Google Scholar
Juhel, J. B., Utama, R. S., Marques, V., Vimono, I. B., Sugeha, H. Y., Kadarusman, Pouyaud, L., Dejean, T., Mouillot, D. & Hocdé, R. Accumulation curves of environmental DNA sequences predict coastal fish diversity in the coral triangle. Proc. R. Soc. B 287(1930), 20200248 (2020).
Kopp, W., Monti, R., Tamburrini, A., Ohler, U. & Akalin, A. Deep learning for genomics using Janggu. Nat. Commun. 11(1), 1–7 (2020).
Google Scholar
Le Bail, P. Y. et al. Updated checklist of the freshwater and estuarine fishes of French Guiana. Cybium 36(1), 293–319 (2012).
LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989).
Google Scholar
Li, W. et al. Validating eDNA measurements of the richness and abundance of anurans at a large scale. J. Anim. Ecol. 90(6), 1466–1479 (2021).
Google Scholar
Lopes, C. M. et al. eDNA metabarcoding: A promising method for anuran surveys in highly diverse tropical forests. Mol. Ecol. Resour. 17(5), 904–914 (2017).
Google Scholar
Makiola, A. et al. Key questions for next-generation biomonitoring. Front. Environ. Sci. 7, 197 (2020).
Google Scholar
Marques, V. et al. Blind assessment of vertebrate taxonomic diversity across spatial scales by clustering environmental DNA metabarcoding sequences. Ecography 43(12), 1779–1790 (2020).
Google Scholar
Marques, V. et al. GAPeDNA: Assessing and mapping global species gaps in genetic databases for eDNA metabarcoding. Divers. Distrib. 27(10), 1880–1892 (2020).
Google Scholar
Mathon, L. et al. Benchmarking bioinformatic tools for fast and accurate eDNA metabarcoding species identification. Mol. Ecol. Resour. 21(7), 2565–2579 (2021).
Google Scholar
McGee, K. M., Robinson, C. & Hajibabaei, M. Gaps in DNA-based biomonitoring across the globe. Front. Ecol. Evol. 7, 337 (2019).
Google Scholar
Murienne, J. et al. Aquatic eDNA for monitoring French Guiana biodiversity. Biodivers. Data J. 7, e37518 (2019).
Nugent, C. M. & Adamowicz, S. J. Alignment-free classification of COI DNA barcode data with the Python package Alfie. Metabarcoding Metagenomics 4, e55815 (2020).
Pagni, M. et al. Density-based hierarchical clustering of pyro-sequences on a large scale-the case of fungal ITS1. Bioinformatics 29(10), 1268–1274 (2013).
Google Scholar
Papa, Y., Le Bail, P. Y. & Covain, R. Genetic landscape clustering of a large DNA barcoding dataset reveals shared patterns of genetic divergence among freshwater fishes of the Maroni Basin. Authorea Preprints (2020).
Piro, V. C., Dadi, T. H., Seiler, E., Reinert, K. & Renard, B. Y. ganon: Precise metagenomics classification against large and up-to-date sets of reference sequences. Bioinformatics 36(Supplement 1), i12–i20 (2020).
Google Scholar
Polanco Fernández, A., Marques, V., Fopp, F., Juhel, J. B., Borrero-Pérez, G. H., Cheutin, M. C., Eme, D. & Pellissier, L. Comparing environmental DNA metabarcoding and underwater visual census to monitor tropical reef fishes. Environ. DNA 3, 142–156 (2021).
Polanco, A. et al. Comparing the performance of 12S mitochondrial primers for fish environmental DNA across ecosystems. Environ. DNA 3(6), 1113–1127 (2021).
Google Scholar
Polanco Fernández, A., Martinezguerra, M. M., Marques, V., Francisco Villa-Navarro, Borrero-Pérez, G. H., Cheutin, M. C., Dejean, T., Hocdé, R., Juhel, J. B., Maire, E., Manel, S. & Pellissier, L. Recovering aquatic and terrestrial biodiversity in a tropical estuary using environmental DNA. Biotropica 53(6), 1606–1619 (2021).
Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, 1–22 (2016).
Google Scholar
Rojahn, J., Gleeson, D. M., Furlan, E., Haeusler, T. & Bylemans, J. Improving the detection of rare native fish species in environmental DNA metabarcoding surveys. Aquat. Conserv. Mar. Freshw. Ecosyst. 31(4), 990–997 (2021).
Google Scholar
Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).
Google Scholar
Sato, Y., Miya, M., Fukunaga, T., Sado, T. & Iwasaki, W. MitoFish and MiFish pipeline: A mitochondrial genome database of fish with an analysis pipeline for environmental DNA metabarcoding. Mol. Biol. Evol. 35(6), 1553–1555 (2018).
Google Scholar
Schirmer, M. et al. Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res. 43(6), e37 (2015).
Google Scholar
Schnell, I. B., Bohmann, K. & Gilbert, M. T. P. Tag jumps illuminated–reducing sequence-to-sample misidentifications in metabarcoding studies. Mol. Ecol. Resour. 15(6), 1289–1303 (2015).
Google Scholar
Sepulveda, A. J., Nelson, N. M., Jerde, C. L. & Luikart, G. Are environmental DNA methods ready for aquatic invasive species management?. Trends Ecol. Evol. 35, 668–678 (2020).
Google Scholar
Shokralla, S., Spall, J. L., Gibson, J. F. & Hajibabaei, M. Next-generation sequencing technologies for environmental DNA research. Mol. Ecol. 21(8), 1794–1805 (2012).
Google Scholar
Shorten, C. & Khoshgoftaar, T. A survey on image data augmentation for deep learning. J. Big Data 6, 60 (2019).
Google Scholar
Singer, G. A. C., Fahner, N. A., Barnes, J. G., McCarthy, A. & Hajibabaei, M. Comprehensive biodiversity analysis via ultra-deep patterned flow cell technology: A case study of eDNA metabarcoding seawater. Sci. Rep. 9(1), 1–12 (2019).
Google Scholar
Su, G. et al. Human impacts on global freshwater fish biodiversity. Science 371(6531), 835 (2021).
Google Scholar
Taberlet, P., Bonin, A., Coissac, E. & Zinger, L. Environmental DNA: For Biodiversity Research and Monitoring (Oxford University Press, Oxford, 2018).
Google Scholar
Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21(8), 2045–2050 (2012).
Google Scholar
Thomsen, P. F. & Willerslev, E. Environmental DNA-An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).
Google Scholar
Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD–A platform for ensemble forecasting of species distributions. Ecography 32(3), 369–373 (2009).
Google Scholar
Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25(4), 929–942 (2016).
Google Scholar
West, K. et al. Large-scale eDNA metabarcoding survey reveals marine biogeographic break and transitions over tropical north-western Australia. Divers. Distrib. 27(10), 1942–1957 (2021).
Google Scholar
Source: Ecology - nature.com