Liu, H. et al. Optimal nitrogen input for higher efficiency and lower environmental impacts of winter wheat production in China. Agr. Ecosyst. Environ. 224, 1–11 (2016).
Google Scholar
Guang-hao, L., Gui-gen, C., Wei-ping, L. & Da-lei, L. Differences of yield and nitrogen use efficiency under different applications of slow-release fertilizer in spring maize. J. Integr. Agric. 20(2), 554–564 (2021).
Google Scholar
Kumar, V. V. Role of Rhizospheric Microbes in Soil 377–398 (Springer, 2018).
Google Scholar
Ullah, A. et al. Factors affecting the adoption of organic farming in Peshawar-Pakistan. Agric. Sci. 6(06), 587–593 (2015).
Cui, Z. et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555(7696), 363–366 (2018).
Google Scholar
Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528(7580), 51–59 (2015).
Google Scholar
Alzaidi, A. A., Baig, M. B. & Elhag, E. A. An investigation into the farmers ’ attitudes towards organic farming in Riyadh Region–Kingdom of Saudi Arabia. Bulg. J. Agric. Sci. 19(3), 426–431 (2013).
Zhihui, W. et al. Combined applications of nitrogen and phosphorus fertilizers with manure increase maize yield and nutrient uptake via stimulating root growth in a long-term experiment. Pedosphere 26(1), 62–73 (2016).
Google Scholar
Guang-hao, L., Gui-gen, C., Wei-ping, L. & Da-lei, L. Differences of yield and nitrogen use efficiency under different applications of slow release fertilizer in spring maize. J. Integr. Agric. 20(2), 554–564 (2020).
Zant, W. Is organic fertilizer going to be helpful in bringing a green revolution to sub-Saharan Africa? Economic explorations for Malawi agriculture (Working Paper). International House Hold Survey Network (2010).
Barman, M., Paul, S., Choudhury, A. G., Roy, P. & Sen, J. Biofertilizer as prospective input for sustainable agriculture in India. Int. J. Curr. Microbiol. App. Sci. 6(11), 1177–1186 (2017).
Google Scholar
Kalhapure, A. H., Shete, B. T. & Dhonde, M. B. Integrated nutrient management in maize (Zea Mays L.) for increasing production with sustainability. Int. J. Agric. Food Sci. Technol. 4(3), 2249–3050 (2013).
Nazli, R. I., Kuşvuran, A., Inal, I., Demirbaş, A. & Tansi, V. Effects of different organic materials on forage yield and quality of silage maize (Zea mays L.). Turk. J. Agric. For. 38(1), 23–31 (2014).
Google Scholar
Niu, Z. et al. Total factor productivity growth in china’s corn farming: an application of generalized productivity indicator. J. Bus. Econ. Manag. 22(5), 1189–1208 (2021).
Google Scholar
van Wesenbeeck, C. F. A., Keyzer, M. A., van Veen, W. C. M. & Qiu, H. Can China’s overuse of fertilizer be reduced without threatening food security and farm incomes?. Agric. Syst. 190, 103093 (2021).
Google Scholar
Ji, Y., Liu, H. & Shi, Y. Will China’s fertilizer use continue to decline? Evidence from LMDI analysis based on crops, regions and fertilizer types. PLoS ONE 15, e0237234 (2020).
Google Scholar
Jiao, X. et al. Grain production versus resource and environmental costs: towards increasing sustainability of nutrient use in China. J. Exp. Bot. 67(17), 4935–4949 (2016).
Google Scholar
Sher, A. et al. Response of maize grown under high plant density; performance, issues and management: a critical review. Adv. Crop Sci. Technol. 5(3), 1–8 (2017).
Google Scholar
De-yang, S. H. I. et al. Increased plant density and reduced N rate lead to more grain yield and higher resource utilization in summer maize. J. Integr. Agric. 15(11), 2515–2528 (2016).
Google Scholar
Du, X., Wang, Z., Lei, W. & Kong, L. Increased planting density combined with reduced nitrogen rate to achieve high yield in maize. Sci. Rep. 11(1), 1–12 (2021).
Google Scholar
Li, T., Zhang, W., Yin, J., Chadwick, D., Norse, D., Lu, Y., Liu, X., Chen, X., Zhang, F., Powlson, D., & Dou, Z. Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem (2017).
Adu-gyamfi, R. et al. One-time fertilizer briquettes application for maize production in savanna agroecologies of Ghana. Soil Fertil. Crop Prod. 111(6), 3339–3350 (2019).
Google Scholar
Jiang, C. et al. Optimal nitrogen application rates of one-time root zone fertilization and the effect of reducing nitrogen application on summer maize. Sustainability 11, 2979 (2019).
Google Scholar
Jiang, C. et al. One-time root-zone N fertilization increases maize yield, NUE and reduces soil N losses in lime concretion black soil. Sci. Rep. 8(1), 1–10 (2018).
Google Scholar
Li, G., Zhao, B., Dong, S., Liu, P. & Vyn, T. J. Impact of controlled release urea on maize yield and nitrogen use efficiency under different water conditions. PLoS ONE 12(7), 1–16 (2017).
Sikora, J. et al. Assessment of the efficiency of nitrogen slow-release fertilizers in integrated production of carrot depending on fertilization strategy. Sustainability (Switzerland) 12(5), 1–10 (2020).
Tian, C. et al. Effects of a controlled-release fertilizer on yield, nutrient uptake, and fertilizer usage efficiency in early ripening rapeseed (Brassica napus L.). J. Zhejian Univ. Sci. B (Biomed. Biotechnol.) 17(14), 775–786 (2016).
Google Scholar
Tong, D. & Xu, R. Effects of urea and ( NH4)2SO4 on nitrification and acidification of Ultisols from Southern China. J. Environ. Sci. 24(4), 682–689 (2012).
Google Scholar
El-rokiek, K. G., Ahmed, S. A. & Abd-elsamad, E. E. H. Effect of adding urea or ammonium sulphate on some herbicides efficiency in controlling weeds in onion plants. J. Am. Sci. 6(11), 536–543 (2010).
FAO. Guidelines for soil description. Enhanced Recovery After Surgery, (2006).
Landon, J. Booker Tropical Soil manual: A Handbook for Soil Survey and Agriculture Land Evaluation in the Tropics and Subtropics (2013).
Zhao, R. F. et al. Fertilization and nitrogen balance in a wheat-maize rotation system in North China. Agron. J. 98(4), 938–945 (2006).
Google Scholar
Huang, S. et al. Estimation of nitrogen supply for summer maize production through a long-term field trial in china. Agronomy 11(7), 1358 (2021).
Google Scholar
Dong, Y. J. et al. Effects of new coated release fertilizer on the growth of maize. J. Soil Sci. Plant Nutr. 16(3), 637–649 (2016).
Google Scholar
Ngosong, C., Bongkisheri, V., Tanyi, C. B., Nanganoa, L. T. & Tening, A. S. Optimizing nitrogen fertilization regimes for sustainable maize (Zea mays L.) production on the volcanic soils of Buea Cameroon. Adv. Agric. 2019, 1–8 (2019).
Su, W., Ahmad, S., Ahmad, I. & Han, Q. Nitrogen fertilization affects maize grain yield through regulating nitrogen uptake, radiation and water use efficiency, photosynthesis and root distribution. PeerJ 8, 1–21 (2020).
Google Scholar
Sainju, U. M, Ghimire, R., & Pradhan, G.P. Nitrogen Fertilization I: Impact on Crop, Soil, and Environment. IntechOpen https://doi.org/10.5772/intechopen.86028 (2020).
Sha, Z. et al. Effect of N stabilizers on fertilizer-N fate in the soil-crop system: a meta- analysis. Agr. Ecosyst. Environ. 2020, 290 (2019).
Chen, K. & Vyn, T. J. Post-silking factor consequences for N efficiency changes over 38 years of commercial maize hybrids. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.01737 (2017).
Google Scholar
Jia, X. P. et al. Farmer’s adoption of improved nitrogen management strategies in maize production in China: an experimental knowledge training. J. Integr. Agric. 12(2), 364–373 (2013).
Google Scholar
Amanullah,. Rate and timing of nitrogen application influence partial factor productivity and agronomic NUE of maize (Zea mays L.) planted at low and high densities on calcareous soil in northwest Pakistan. J. Plant Nutr. 39(5), 683–690 (2016).
Google Scholar
Draman, A., Almas, L. K. Partial factor productivity, agronomic efficiency, and economic analyses of maize in wheat-maize cropping system in Pakistan. Southern Agricultural Economics Association Annual Meetings, 2009 (January 2009).
Yan, P. et al. Interaction between plant density and nitrogen management strategy in improving maize grain yield and nitrogen use efficiency on the North China Plain. Agric. Sci. 154, 978–988 (2016).
Google Scholar
Oenema, O. Nitrogen use efficiency (NUE) an indicator for the utilization of nitrogen in food systems. EU Nitrogen Expert Panel, January 2017, 1–4 (2015).
Venterea, R. T., Coulter, J. A. & Dolan, M. S. Evaluation of intensive “4R” strategies for decreasing nitrous oxide emissions and nitrogen surplus in rainfed corn. J. Environ. Qual. 45(4), 1186–1195 (2016).
Google Scholar
Zhang, C., Ju, X., Powlson, D., Oenema, O. & Smith, P. Nitrogen surplus benchmarks for controlling N pollution in the main cropping systems of China. Environ. Sci. Technol. 53(12), 6678–6687 (2019).
Google Scholar
Fernández, C., Koop, G. & Steel, M. F. J. Multiple-output production with undesirable outputs multiple-output production with undesirable outputs : an application to nitrogen surplus in agriculture. J. Am. Stat. Assoc. 97(458), 432–442 (2013).
Google Scholar
Børsting, C. F., Kristensen, T., Misciattelli, L., Hvelplund, T. & Weisbjerg, M. R. Reducing nitrogen surplus from dairy farms. Effects of feeding and management. Livest. Prod. Sci. 83(2–3), 165–178 (2003).
Google Scholar
Liang, K. et al. Reducing nitrogen surplus and environmental losses by optimized nitrogen and water management in double rice cropping system of South China. Agric. Ecosyst. Environ. 286, 106680 (2019).
Google Scholar
Klages, S. et al. Nitrogen surplus-a unified indicator for water pollution in Europe?. Water (Switzerland) 12(4), 1197 (2020).
Google Scholar
Muratoglu, A. Grey water footprint of agricultural production: an assessment based on nitrogen surplus and high-resolution leaching runoff fractions in Turkey. Sci. Total Environ. 742, 140553 (2020).
Google Scholar
Niemiec, M. & Komorowska, M. The use of slow-release fertilizers as a part of optimization of celeriac production technology. Agric. Eng. 22(2), 59–68 (2018).
Ranum, P., Peña-Rosas, J. P. & Garcia-Casal, M. N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 1312(1), 105–112 (2014).
Google Scholar
HLPE. Biofules and food security. High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security, Rome (2013).
Karp, A., Beale, M. H., Beaudoin, F. & Eastmond, P. J. Growing innovations for the bioeconomy. Nat. Plants https://doi.org/10.1038/nplants.2015.193 (2015).
Google Scholar
Chavarria, H., Trigo, E., Villarreal, F., Elverdin, P., & Piñeiro, V. Policy brief bioeconomy: a sustainable development strategy task force 10 sustainable energy, water, and food systems. T20, Saudi Arabia (2020).
Source: Ecology - nature.com