Thiel, M. et al. The Humboldt Current System of northern and central Chile—Oceanographic processes, ecological interactions and socioeconomic feedback. Oceanogr. Mar. Biol. Annu. Rev. 45, 195–344 (2007).
FAO. The State of World Fisheries and Aquaculture 2020. Sustainability in action 2020.
Castilla, J. C. & Camus, P. A. The Humboldt-El Niño scenario: Coastal benthic resources and anthropogenic influences, with particular reference to the 1982/83 ENSO. S. Afr. J. Mar. Sci. 12, 703–712. https://doi.org/10.2989/02577619209504735 (1992).
Google Scholar
Alheit, J. & Niquen, M. Regime shifts in the Humboldt Current ecosystem. Prog. Oceanogr. 60, 201–222. https://doi.org/10.1016/j.pocean.2004.02.006 (2004).
Google Scholar
González, H. E. et al. Carbon fluxes within the epipelagic zone of the Humboldt Current System off Chile: The significance of euphausiids and diatoms as key functional groups for the biological pump. Prog. Oceanogr. 83, 217–227. https://doi.org/10.1016/j.pocean.2009.07.036 (2009).
Google Scholar
Quiñones, R. A., Levipan, H. A. & Urrutia, H. Spatial and temporal variability of planktonic archaeal abundance in the Humboldt Current System off Chile. Deep Sea Res. Part II 56, 1073–1082. https://doi.org/10.1016/j.dsr2.2008.09.012 (2009).
Google Scholar
Antezana, T. Euphausia mucronata: A keystone herbivore and prey of the Humboldt Current System. Deep Sea Res. Part II 57, 652–662. https://doi.org/10.1016/j.dsr2.2009.10.014 (2010).
Google Scholar
Anguita, C., Gelcich, S., Aldana, M. & Pulgar, J. Exploring the influence of upwelling on the total allowed catch and harvests of a benthic gastropod managed under a territorial user rights for fisheries regime along the Chilean coast. Ocean Coast. Manag. 195, 105256. https://doi.org/10.1016/j.ocecoaman.2020.105256 (2020).
Google Scholar
González, J. E., Yannicelli, B. & Stotz, W. The interplay of natural variability, productivity and management of the benthic ecosystem in the Humboldt Current System: Twenty years of assessment of Concholepas concholepas fishery under a TURF management system. Ocean Coast. Manag. 208, 105628. https://doi.org/10.1016/j.ocecoaman.2021.105628 (2021).
Google Scholar
Canales, T. M. et al. Endogenous, climate, and fishing influences on the population dynamics of Small Pelagic Fish in the Southern Humboldt Current Ecosystem. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00082 (2020).
Google Scholar
González, J. E., Ortiz, M. Exploring harvest strategies in a benthic habitat in the Humboldt Current System (Chile): A study case. In Marine Coastal Ecosystems Modelling and Conservation: Latin American Experiences 127–141 (Springer International Publishing, 2021). https://doi.org/10.1007/978-3-030-58211-1_6.
Ortiz, M. Pre-image population indices for anchovy and sardine species in the Humboldt Current System off Peru and Chile: Years decaying productivity. Ecol. Ind. 119, 106844. https://doi.org/10.1016/j.ecolind.2020.106844 (2020).
Google Scholar
Tognelli, M. F., Silva-Garcia, C., Labra, F. A. & Marquet, P. A. Priority areas for the conservation of coastal marine vertebrates in Chile. Biol. Conserv. 126, 420–428. https://doi.org/10.1016/j.biocon.2005.06.021 (2005).
Google Scholar
Bustamante, C., Vargas-Caro, C. & Bennett, M. B. Not all fish are equal: Functional biodiversity of cartilaginous fishes (Elasmobranchii and Holocephali) in Chile. J. Fish Biol. 85, 1617–1633. https://doi.org/10.1111/jfb.12517 (2014).
Google Scholar
Sarmiento-Devia, R. A., Harrod, C. & Pacheco, A. S. Ecology and Conservation of Sea Turtles in Chile. Chelonian Conserv. Biol. 14, 21–33. https://doi.org/10.2744/ccab-14-01-21-33.1 (2015).
Google Scholar
Pérez-Álvarez, M. J., Alvarez, E., Aguayo-Lobo, A. & Olavarría, C. Occurrence and distribution of Chilean dolphin (Cephalorhynchus eutropia) in coastal waters of central Chile. N.Z. J. Mar. Freshw. Res. 41, 405–409. https://doi.org/10.1080/00288330709509931 (2007).
Google Scholar
Pacheco, A. S. et al. Cetacean diversity revealed from whale-watching observations in Northern Peru. Aquat. Mamm. 45, 116–122. https://doi.org/10.1578/AM.45.1.2019.116 (2019).
Google Scholar
Buchan, S. J., Vásquez, P., Olavarría, C. & Castro, L. R. Prey items of baleen whale species off the coast of Chile from fecal plume analysis. Mar. Mamm. Sci. 37, 1116–1127 (2021).
Google Scholar
Hucke-Gaete, R. et al. From Chilean Patagonia to Galapagos, Ecuador: Novel insights on blue whale migratory pathways along the Eastern South Pacific. PeerJ 6, e4695. https://doi.org/10.7717/peerj.4695 (2018).
Google Scholar
Llapapasca, M. A. et al. Modeling the potential habitats of dusky, commons and bottlenose dolphins in the Humboldt Current System off Peru: The influence of non-El Niño vs. El Niño 1997–98 conditions and potential prey availability. Prog. Oceanogr. 168, 169–181. https://doi.org/10.1016/j.pocean.2018.09.003 (2018).
Google Scholar
Sepúlveda, M. et al. From whaling to whale watching: Identifying fin whale critical foraging habitats off the Chilean coast. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 821–829. https://doi.org/10.1002/aqc.2899 (2018).
Google Scholar
Williams, R. et al. Chilean blue whales as a case study to illustrate methods to estimate abundance and evaluate conservation status of rare species. Conserv. Biol. 25, 526–535. https://doi.org/10.1111/j.1523-1739.2011.01656.x (2011).
Google Scholar
Moore, J. E. & Barlow, J. Bayesian state-space model of fin whale abundance trends from a 1991–2008 time series of line-transect surveys in the California Current. J. Appl. Ecol. 48, 1195–1205. https://doi.org/10.1111/j.1365-2664.2011.02018.x (2011).
Google Scholar
Campbell, G. S. et al. Inter-annual and seasonal trends in cetacean distribution, density and abundance off southern California. Deep Sea Res. Part II 112, 143–157. https://doi.org/10.1016/j.dsr2.2014.10.008 (2015).
Google Scholar
Nichol, L. M., Wright, B. M., O’Hara, P. & Ford, J. K. B. Risk of lethal vessel strikes to humpback and fin whales off the west coast of Vancouver Island, Canada. Endanger. Species Res. 32, 373–390. https://doi.org/10.3354/esr00813 (2017).
Google Scholar
Pennino, M. G. et al. A spatially explicit risk assessment approach: Cetaceans and marine traffic in the Pelagos Sanctuary (Mediterranean Sea). PLoS One 12, e0179686. https://doi.org/10.1371/journal.pone.0179686 (2017).
Google Scholar
Van Waerebeek, K. & Reyes, J. C. Catch of small cetaceans at Pucusana Port, central Peru, during 1987. Biol. Conserv. 51, 15–22. https://doi.org/10.1016/0006-3207(90)90028-N (1990).
Google Scholar
Mangel, J. C. et al. Small cetacean captures in Peruvian artisanal fisheries: High despite protective legislation. Biol. Conserv. 143, 136–143. https://doi.org/10.1016/j.biocon.2009.09.017 (2010).
Google Scholar
Campbell, E., Pasara-Polack, A., Mangel, J. C. & Alfaro-Shigueto, J. Use of small cetaceans as bait in small-scale fisheries in Peru. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.534507 (2020).
Google Scholar
Reyes, J. C. & Oporto, J. A. Gillnet fisheries and cetaceans in the southeast Pacific. Report of the International Whaling Commission 467–474 (1994).
Aguayo-Lobo, A. Los cetáceos y sus perspectivas de conservación. Estudios Oceanológicos 18, 35–43 (1999).
Félix, F., Muñoz, M., Falconí, J., Botero, N., Haase, B., et al. Entanglement of humpback whales in artisanal fishing gear in Ecuador. J. Cetacean. Res. Manag. 283–290 (2020).
Félix, F. et al. Challenges and opportunities for the conservation of marine mammals in the Southeast Pacific with the entry into force of the U.S. Marine Mammal Protection Act. Reg. Stud. Mar. Sci. 48, 102036. https://doi.org/10.1016/j.rsma.2021.102036 (2021).
Google Scholar
García-Cegarra, A. M. & Pacheco, A. S. Collision risk areas between fin and humpback whales with large cargo vessels in Mejillones Bay (23°S), northern Chile. Mar. Policy 103, 182–186. https://doi.org/10.1016/j.marpol.2018.12.022 (2019).
Google Scholar
Santos-Carvallo, M. et al. Impacts of whale-watching on the short-term behavior of Fin Whales (Balaenoptera physalus) in a marine protected area in the southeastern pacific. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.623954 (2021).
Google Scholar
Villagra, D., García-Cegarra, A., Gallardo, D. I. & Pacheco, A. S. Energetic effects of whale-watching boats on humpback whales on a breeding ground. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.600508 (2021).
Google Scholar
Buckland, S., Anderson, D., Burnham, K., Laake, J., Borchers, D., Thomas, L. Introduction to Distance Sampling Estimating Abundance of Biological Populations. (Oxford University Press, 2001).
Hedley, S. L. & Buckland, S. T. Spatial models for line transect sampling. JABES 9, 181–199. https://doi.org/10.1198/1085711043578 (2004).
Google Scholar
Williams, R., Hedley, S. L., Hammond, P. S. Modeling distribution and abundance of Antarctic baleen whales using ships of opportunity (2006).
DoniolValcroze, T., Berteaux, D., Larouche, P. & Sears, R. Influence of thermal fronts on habitat selection by four rorqual whale species in the Gulf of St. Lawrence. Mar. Ecol. Prog. Ser. 335, 207–216. https://doi.org/10.3354/meps335207 (2007).
Google Scholar
Scales, K. L. et al. Should I stay or should I go? Modelling year-round habitat suitability and drivers of residency for fin whales in the California Current. Divers. Distrib. 23, 1204–1215. https://doi.org/10.1111/ddi.12611 (2017).
Google Scholar
Bedriñana-Romano, L. et al. Integrating multiple data sources for assessing blue whale abundance and distribution in Chilean Northern Patagonia. Divers. Distrib. https://doi.org/10.1111/ddi.12739 (2018).
Google Scholar
Bedriñana-Romano, L. et al. Defining priority areas for blue whale conservation and investigating overlap with vessel traffic in Chilean Patagonia, using a fast-fitting movement model. Sci. Rep. 11, 2709. https://doi.org/10.1038/s41598-021-82220-5 (2021).
Google Scholar
Pirotta, E., Matthiopoulos, J., MacKenzie, M., Scott-Hayward, L. & Rendell, L. Modelling sperm whale habitat preference: A novel approach combining transect and follow data. Mar. Ecol. Prog. Ser. 436, 257–272. https://doi.org/10.3354/meps09236 (2011).
Google Scholar
Mendelssohn, R. rerddapXtracto: Extracts Environmental Data from “ERDDAP” Web Services. (2020).
Lau-Medrano, W. grec: Gradient-Based Recognition of Spatial Patterns in Environmental Data. (2020).
Belkin, I. M. & O’Reilly, J. E. An algorithm for oceanic front detection in chlorophyll and SST satellite imagery. J. Mar. Syst. 78, 319–326. https://doi.org/10.1016/j.jmarsys.2008.11.018 (2009).
Google Scholar
Hijmans, R. J., van Etten, J., Cheng, J., Sumner, M., Mattiuzzi, M., Greenberg, J. A., et al. raster: Geographic Data Analysis and Modeling. (2018).
Royle, J. A. N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115. https://doi.org/10.1111/j.0006-341X.2004.00142.x (2004).
Google Scholar
Chelgren, N. D., Samora, B., Adams, M. J. & McCreary, B. Using spatiotemporal models and distance sampling to map the space use and abundance of newly metamorphosed Western Toads (Anaxyrus boreas). Herpetol. Conserv. Biol. 6, 16 (2011).
Hartig, F., Lohse, L. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. (2022).
Gelman, A., Meng, X.-L. & Stern, H. Posterior predictive assessment of model fitness via realized discrepancies. Stat. Sin. 6, 733–760. https://doi.org/10.2307/24306036 (1996).
Google Scholar
Kery, M. & Royle, J. A. Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS: Volume 1: Prelude and Static Models. (Academic Press, 2015).
R DCT. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2015).
Plummer, M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. (2003).
Fonnesbeck, C. J., Garrison, L. P., Ward-Geiger, L. I. & Baumstark, R. D. Bayesian hierarchichal model for evaluating the risk of vessel strikes on North Atlantic right whales in the SE United States. Endanger. Species Res. 6, 87–94. https://doi.org/10.3354/esr00134 (2008).
Google Scholar
Vanderlaan, A. S. M., Taggart, C. T., Serdynska, A. R., Kenney, R. D. & Brown, M. W. Reducing the risk of lethal encounters: Vessels and right whales in the Bay of Fundy and on the Scotian Shelf. Endanger. Species Res. 4, 283–297. https://doi.org/10.3354/esr00083 (2008).
Google Scholar
Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62, 2868–2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x (2008).
Google Scholar
Hijmans, R. J., Phillips, S., Leathwick, J., Elith, J. & Hijmans, M. R. J. Package ‘dismo’. Circles 9, 1–68 (2017).
Daneri, G. et al. Primary production and community respiration in the Humboldt Current System off Chile and associated oceanic areas. Mar. Ecol. Prog. Ser. 197, 41–49. https://doi.org/10.3354/meps197041 (2000).
Google Scholar
Montecino, V. & Lange, C. B. The Humboldt Current System: Ecosystem components and processes, fisheries, and sediment studies. Prog. Oceanogr. 83, 65–79. https://doi.org/10.1016/j.pocean.2009.07.041 (2009).
Google Scholar
Escribano, R., Hidalgo, P. & Krautz, C. Zooplankton associated with the oxygen minimum zone system in the northern upwelling region of Chile during March 2000. Deep Sea Res. Part II 56, 1083–1094. https://doi.org/10.1016/j.dsr2.2008.09.009 (2009).
Google Scholar
Perez-Alvarez, M. et al. Fin whales (Balaenoptera physalus) feeding on Euphausia mucronata in nearshore waters off North-Central Chile. Aquat. Mamm. 32, 109–113. https://doi.org/10.1578/AM.32.1.2006.109 (2006).
Google Scholar
Riquelme-Bugueño, R. et al. Fatty acid composition in the endemic Humboldt Current krill, Euphausia mucronata (Crustacea, Euphausiacea) in relation to the phytoplankton community and oceanographic variability off Dichato coast in central Chile. Prog. Oceanogr. 188, 102425. https://doi.org/10.1016/j.pocean.2020.102425 (2020).
Google Scholar
Escribano, R., Marin, V. & Irribarren, C. Distribution of Euphausia mucronata at the upwelling area of Peninsula Mejillones, northern Chile: The influence of the oxygen minimum layer. Sci. Mar. 64, 69–77. https://doi.org/10.3989/scimar.2000.64n169 (2000).
Google Scholar
Riquelme-Bugueno, R., Escribano, R. & Gomez-Gutierrez, J. Somatic and molt production in Euphausia mucronata off central-southern Chile: The influence of coastal upwelling variability. Mar. Ecol. Prog. Ser. 476, 39–57 (2013).
Google Scholar
Savoca, M. S. et al. Baleen whale prey consumption based on high-resolution foraging measurements. Nature 599, 85–90. https://doi.org/10.1038/s41586-021-03991-5 (2021).
Google Scholar
Roman, J. & McCarthy, J. J. The whale pump: Marine mammals enhance primary productivity in a coastal basin. PLoS One 5, e13255. https://doi.org/10.1371/journal.pone.0013255 (2010).
Google Scholar
Hucke-Gaete, R. Whales might also be an important component in patagonian fjord ecosystems: Comment to Iriarte et al. Ambio 40, 104–105. https://doi.org/10.1007/s13280-010-0110-8 (2011).
Google Scholar
Lavery, T. J. et al. Whales sustain fisheries: Blue whales stimulate primary production in the Southern Ocean. Mar. Mamm. Sci. https://doi.org/10.1111/mms.12108 (2014).
Google Scholar
Roman, J. et al. Whales as marine ecosystem engineers. Front. Ecol. Environ. 12, 377–385. https://doi.org/10.1890/130220 (2014).
Google Scholar
Hucke-Gaete, R., Osman, L. P., Moreno, C. A., Findlay, K. P. & Ljungblad, D. K. Discovery of a blue whale feeding and nursing ground in southern Chile. Proc. R. Soc. Lond. B 271, S170–S173. https://doi.org/10.1098/rsbl.2003.0132 (2004).
Google Scholar
Buchan, S. J. & Quiones, R. A. First insights into the oceanographic characteristics of a blue whale feeding ground in northern Patagonia, Chile. Mar. Ecol. Prog. Ser. 554, 183–199. https://doi.org/10.3354/meps11762 (2016).
Google Scholar
Findlay, K., Pitman, R., Tsurui, T., Sakai, K., Ensor, P., Iwakami, H., et al. IWC-southern whale and ecosystem research (IWC/SOWER) blue whale Cruise, Chile. Documento Técnico, IWC 1998 (1998).
Branch, T. A. et al. Past and present distribution, densities and movements of blue whales Balaenoptera musculus in the Southern Hemisphere and northern Indian Ocean. Mamm. Rev. 37, 116–175. https://doi.org/10.1111/j.1365-2907.2007.00106.x (2007).
Google Scholar
Barlow, D. R., Klinck, H., Ponirakis, D., Garvey, C. & Torres, L. G. Temporal and spatial lags between wind, coastal upwelling, and blue whale occurrence. Sci. Rep. 11, 6915. https://doi.org/10.1038/s41598-021-86403-y (2021).
Google Scholar
Galletti-Vernazzani, B., Jackson, J. A., Cabrera, E., Carlson, C. A. Jr. & RLB.,. Estimates of abundance and trend of chilean blue whales off Isla de Chiloé, Chile. PLoS One 12, e0168646. https://doi.org/10.1371/journal.pone.0168646 (2017).
Google Scholar
Friedlaender, A. S., Goldbogen, J. A., Hazen, E. L., Calambokidis, J. & Southall, B. L. Feeding performance by sympatric blue and fin whales exploiting a common prey resource. Mar. Mamm. Sci. 31, 345–354. https://doi.org/10.1111/mms.12134 (2015).
Google Scholar
Abrahms, B. et al. Memory and resource tracking drive blue whale migrations. PNAS 116, 5582–5587 (2019).
Google Scholar
Clarke, R., Aguayo, A. & Basulto, S. Whale observation and whale marking off the coast of Chile in 1964. Sci. Rep. Whales Res. Inst. Tokyo 30, 117–178 (1978).
Allison, C. IWC individual and summary catch databases Version 5.5 (12 February 2013). Available from the International Whaling Commission 135 (2013).
Pastene, L. A., Acevedo, J. & Branch, T. A. Morphometric analysis of Chilean blue whales and implications for their taxonomy. Mar. Mamm. Sci. 36, 116–135. https://doi.org/10.1111/mms.12625 (2020).
Google Scholar
Rendell, L., Whitehead, H. & Escribano, R. Sperm whale habitat use and foraging success off northern Chile: Evidence of ecological links between coastal and pelagic systems. Mar. Ecol. Prog. Ser. 275, 289–295. https://doi.org/10.3354/meps275289 (2004).
Google Scholar
Jaquet, N. & Whitehead, H. Scale-dependent correlation of sperm whale distribution with environmental features and productivity in the South Pacific. Mar. Ecol. Prog. Ser. 135, 1–9. https://doi.org/10.3354/meps135001 (1996).
Google Scholar
O’Hern, J. E., Biggs, D. C. Sperm whale (Physeter macrocephalus) habitat in the Gulf of Mexico: Satellite observed ocean color and altimetry applied to small-scale variability in distribution. Aquat. Mamm. 35 (2009).
Koen Alonso, M., Crespo, E. A., García, N. A., Pedraza, S. N. & Coscarella, M. A. Diet of dusky dolphins, Lagenorhynchus obscurus, in waters off Patagonia, Argentina. Fish. Bull. 96, 366–374 (1998).
García-Godos, I., Waerebeek, K. V., Reyes, J. C., Alfaro-Shigueto, J. & Arias-Schreiber, M. Prey occurrence in the stomach contents of four small cetacean species in Peru. Latin Am. J. Aquat. Mamm. 6, 171–183. https://doi.org/10.5597/lajam00122 (2007).
Google Scholar
Dans, S. L., Crespo, E. A., Koen-Alonso, M., Markowitz, T. M., Berón Vera, B., Dahood, A. D. Chapter 3—Dusky dolphin trophic ecology: Their role in the food web. In The Dusky Dolphin (eds. Würsig, B., Würsig, M.) 49–74 (Academic Press, 2010). https://doi.org/10.1016/B978-0-12-373723-6.00003-5.
Romero, M. A. et al. Feeding habits of two sympatric dolphin species off North Patagonia, Argentina. Mar. Mamm. Sci. 28, 364–377 (2012).
Google Scholar
Loizaga de Castro, R. et al. Feeding ecology of dusky dolphins Lagenorhynchus obscurus: Evidence from stable isotopes. J. Mammal. 97, 310–320. https://doi.org/10.1093/jmammal/gyv180 (2016).
Google Scholar
Cipriano, F. W. Behavior and occurrence patterns, feeding ecology, and life history of dusky dolphins (Lagenorhynchus obscurus) off Kaikoura, New Zealand. (1992).
Benoit-Bird, K. J., Würsig, B. & Mfadden, C. J. Dusky dolphin (lagenorhynchus obscurus) foraging in two different habitats: Active acoustic detection of dolphins and their prey. Mar. Mamm. Sci. 20, 215–231. https://doi.org/10.1111/j.1748-7692.2004.tb01152.x (2004).
Google Scholar
Van Waerebeek, K. Records of dusky dolphins Lagenorhynchus obscurus (Gray, 1828) in the eastern South Pacific. Beaufortia (1992).
Selzer, L. A. & Payne, P. M. The distribution of white-sided (Lagenorhynchus acutus) and common dolphins (Delphinus delphis) vs. Environmental features of the continental shelf of the Northeastern United States. Mar. Mamm. Sci. 4, 141–153. https://doi.org/10.1111/j.1748-7692.1988.tb00194.x (1988).
Google Scholar
Neumann, D. R. Seasonal movements of short-beaked common dolphins (Delphinus delphis) in the north-western Bay of Plenty, New Zealand: Influence of sea surface temperature and El Niño/La Niña. N.Z. J. Mar. Freshw. Res. 35, 371–374. https://doi.org/10.1080/00288330.2001.9517007 (2001).
Google Scholar
Peters, K. J. et al. Foraging ecology of the common dolphin Delphinus delphis revealed by stable isotope analysis. Mar. Ecol. Prog. Ser. 652, 173–186. https://doi.org/10.3354/meps13482 (2020).
Google Scholar
Brand, D. et al. Common dolphins, common in neritic waters off southern Israel, demonstrate uncommon dietary habits. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 15–21. https://doi.org/10.1002/aqc.3165 (2021).
Google Scholar
Barlow, J. & Taylor, B. L. Estimates of sperm whale abundance in the Northeastern temperate pacific from a combined acoustic and visual survey. Mar. Mamm. Sci. 21, 429–445. https://doi.org/10.1111/j.1748-7692.2005.tb01242.x (2005).
Google Scholar
Cañadas, A., Desportes, G. & Borchers, D. Estimation of g (0) and abundance of common dolphins (Delphinus delphis) from the NASS-95 Faroese survey. J. Cetac. Res. Manag. 6, 191–198 (2004).
Miller, D. L., Burt, M. L., Rexstad, E. A. & Thomas, L. Spatial models for distance sampling data: Recent developments and future directions. Methods Ecol. Evol. 4, 1001–1010. https://doi.org/10.1111/2041-210X.12105 (2013).
Google Scholar
Sigourney, D. B. et al. Developing and assessing a density surface model in a Bayesian hierarchical framework with a focus on uncertainty: Insights from simulations and an application to fin whales (Balaenoptera physalus). PeerJ 8, e8226. https://doi.org/10.7717/peerj.8226 (2020).
Google Scholar
Panigada, S. et al. Mediterranean fin whales at risk from fatal ship strikes. Mar. Pollut. Bull. 52, 1287–1298. https://doi.org/10.1016/j.marpolbul.2006.03.014 (2006).
Google Scholar
Ribeiro, S., Viddi, F. A. & Freitas, T. R. Behavioural responses of Chilean dolphins (Cephalorhynchus eutropia) to boats in Yaldad Bay, southern Chile. Aquat. Mamm. 31, 234 (2005).
Google Scholar
Bearzi, G. et al. Overfishing and the disappearance of short-beaked common dolphins from western Greece. Endanger. Species Res. 5, 1–12. https://doi.org/10.3354/esr00103 (2008).
Google Scholar
Reeves, R. R., McClellan, K. & Werner, T. B. Marine mammal bycatch in gillnet and other entangling net fisheries, 1990 to 2011. Endanger. Species Res. 20, 71–97. https://doi.org/10.3354/esr00481 (2013).
Google Scholar
van der Hoop, J. M. et al. Vessel strikes to large whales before and after the 2008 Ship Strike Rule. Conserv. Lett. 8, 24–32. https://doi.org/10.1111/conl.12105 (2015).
Google Scholar
Erbe, C., Reichmuth, C., Cunningham, K., Lucke, K. & Dooling, R. Communication masking in marine mammals: A review and research strategy. Mar. Pollut. Bull. 103, 15–38. https://doi.org/10.1016/j.marpolbul.2015.12.007 (2016).
Google Scholar
González-But, J. C. & Sepúlveda, M. Captura incidental del delfín común (Delphinus delphis) en la pesquería industrial de cerco, norte de Chile. Rev. Biol. Mar. Oceanogr. 51, 429–433. https://doi.org/10.4067/S0718-19572016000200019 (2016).
Google Scholar
Alvarado-Rybak, M. et al. Pathological findings in cetaceans sporadically stranded along the Chilean Coast. Front. Mar. Sci. 7, 684. https://doi.org/10.3389/fmars.2020.00684 (2020).
Google Scholar
Dans, S. L., Koen, A. M., Pedraza, S. & Crespo, E. A. Incidental catch of dolphins in trawling fisheries off Patagonia, Argentina: Can populations persist?. Ecol. Appl. 13, 754–762. https://doi.org/10.1890/1051-0761(2003)013[0754:ICODIT]2.0.CO;2 (2003).
Google Scholar
Childerhouse S, Baxter A. Human interactions with dusky dolphins: A management perspective, Chapter 12. In The Dusky Dolphin (eds. Würsig, B. & Würsig, M.) 245–275 (Academic Press, 2010). https://doi.org/10.1016/B978-0-12-373723-6.00012-6.
Mannocci, L. et al. Assessing the impact of bycatch on dolphin populations: The case of the common dolphin in the Eastern North Atlantic. PLoS One 7, e32615. https://doi.org/10.1371/journal.pone.0032615 (2012).
Google Scholar
Thompson, F. N., Abraham, E. R. & Berkenbusch, K. Common dolphin (Delphinus delphis) Bycatch in New Zealand commercial trawl fisheries. PLoS One 8, e64438. https://doi.org/10.1371/journal.pone.0064438 (2013).
Google Scholar
Source: Ecology - nature.com