in

Comparison of traditional and DNA metabarcoding samples for monitoring tropical soil arthropods (Formicidae, Collembola and Isoptera)

  • Lavelle, P. et al. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 42, S3–S15 (2006).

    Article 

    Google Scholar 

  • André, H. M., Noti, M. I. & Lebrun, P. The soil fauna: The other last biotic frontier. Biodiv. Conserv. 3, 45–56 (1994).

    Article 

    Google Scholar 

  • Decaëns, T. Macroecological patterns in soil communities. Glob. Ecol. Biogeogr. 19, 287–302 (2010).

    Article 

    Google Scholar 

  • IPCC. Global Warming of 1.5 °C. Summary for Policymakers. (World Meteorological Organization, 2018).

  • Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kardol, P., Reynolds, W. N., Norby, R. J. & Classen, A. T. Climate change effects on soil microarthropod abundance and community structure. Appl. Soil Ecol. 47, 37–44 (2011).

    Article 

    Google Scholar 

  • Kaspari, M., Clay, N. A., Lucas, J., Yanoviak, S. P. & Kay, A. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Glob. Change Biol. 21, 1092–1102 (2015).

    Article 

    Google Scholar 

  • Baird, D. J. & Hajibabaei, M. Biomonitoring 2.0: A new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Mol. Ecol. 21, 2039–2044 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Leray, M. & Knowlton, N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. PNAS 112, 2076–2081 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Beng, K. C. et al. The utility of DNA metabarcoding for studying the response of arthropod diversity and composition to land-use change in the tropics. Sci. Rep. 6, 1–13. https://doi.org/10.1038/srep24965 (2016).

    CAS 
    Article 

    Google Scholar 

  • Zhang, K. et al. Plant diversity accurately predicts insect diversity in two tropical landscapes. Mol. Ecol. 25, 4407–4419 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Hebert, P. D., Cywinska, A., Ball, S. L. & Dewaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B 270, 313–321 (2003).

    CAS 
    Article 

    Google Scholar 

  • Hajibabaei, M., Janzen, D. H., Burns, J. M., Hallwachs, W. & Hebert, P. D. DNA barcodes distinguish species of tropical Lepidoptera. PNAS 103, 968–971 (2006).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ratnasingham, S. & Hebert, P. D. N. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE 8, e66213. https://doi.org/10.1371/journal.pone.0066213 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Porter, T. M. & Hajibabaei, M. Scaling up: A guide to high-throughput genomic approaches for biodiversity analysis. Mol. Ecol. 27, 313–338 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Tang, M. et al. High-throughput monitoring of wild bee diversity and abundance via mitogenomics. Methods Ecol. Evol. 6, 1034–1043 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Arribas, P., Andújar, C., Hopkins, K., Shepherd, M. & Vogler, A. P. Metabarcoding and mitochondrial metagenomics of endogean arthropods to unveil the mesofauna of the soil. Methods Ecol. Evol. 7, 1071–1081 (2016).

    Article 

    Google Scholar 

  • Arribas, P., Andújar, C., Salces-Castellano, A., Emerson, B. C. & Vogler, A. P. The limited spatial scale of dispersal in soil arthropods revealed with whole-community haplotype-level metabarcoding. Mol. Ecol. 30, 48–61 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Oliverio, A. M., Gan, H., Wickings, K. & Fierer, N. A DNA metabarcoding approach to characterize soil arthropod communities. Soil Biol. Biochem. 125, 37–43 (2018).

    CAS 
    Article 

    Google Scholar 

  • Zinger, L. et al. Body size determines soil community assembly in a tropical forest. Mol. Ecol. 28, 528–543 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • McGee, K. M., Porter, T. M., Wright, M. & Hajibabaei, M. Drivers of tropical soil invertebrate community composition and richness across tropical secondary forests using DNA metasystematics. Sci. Rep. 10, 18429. https://doi.org/10.1038/s41598-020-75452-4 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hajibabaei, M., Spall, J. L., Shokralla, S. & van Konynenburg, S. Assessing biodiversity of a freshwater benthic macroinvertebrate community through non-destructive environmental barcoding of DNA from preservative ethanol. BMC Ecol. 12, 28. https://doi.org/10.1186/1472-6785-12-28 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gibson, J. et al. Simultaneous assessment of the macrobiome and microbiome in a bulk sample of tropical arthropods through DNA metasystematics. PNAS 111, 8007–8012 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lamb, P. D. et al. How quantitative is metabarcoding: A meta-analytical approach. Mol. Ecol. 28, 420–430 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Piñol, J., Senar, M. A. & Symondson, W. O. The choice of universal primers and the characteristics of the species mixture determine when DNA metabarcoding can be quantitative. Mol. Ecol. 28, 407–419 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Creedy, T. J., Ng, W. S. & Vogler, A. P. Toward accurate species-level metabarcoding of arthropod communities from the tropical forest canopy. Ecol. Evol. 9, 3105–3116 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lach, L., Parr, C., Abbott, K. Ant Ecology (Oxford University Press, 2010).

  • Palacios-Vargas, J. G. & Castaño-Meneses, G. Seasonality and community composition of springtails in Mexican forest. In Arthropods of Tropical Forests. Spatio-Temporal Dynamics and Resource Use in the Canopy (eds. Basset, Y. et al.) 159–169 (Cambridge University Press, 2003).

  • Bignell, D. E. & Eggleton, P. Termites in ecosystems. In Termites: Evolution, Sociality, Symbiosis, Ecology (eds Abe, T., Bignell, D. E. & Higashi, M.) 363–387 (Kluwer Academic Publishers, 2000).

  • Anderson-Teixeira, K. J. et al. CTFS-Forest GEO: A worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).

    Article 

    Google Scholar 

  • Lamarre, G. P. et al. Monitoring tropical insects in the 21st century. Adv. Ecol. Res. 62, 295–330 (2020).

    Article 

    Google Scholar 

  • Basset, Y. et al. Enemy-free space and the distribution of ants, springtails and termites in the soil of one tropical rainforest. Eur. J. Soil Biol. 99, 103193. https://doi.org/10.1016/j.ejsobi.2020.103193 (2020).

    Article 

    Google Scholar 

  • Agosti, D., Majer, J. D., Alonso, L. E. & Schultz, T. R. Ants. Standards Methods for Measuring and Monitoring Biodiversity (Smithsonian Institution Press, 2000).

  • Bourguignon, T., Leponce, M. & Roisin, Y. Insights into the termite assemblage of a neotropical rainforest from the spatio-temporal distribution of flying alates. Insect. Conserv. Divers. 2, 153–162 (2009).

    Article 

    Google Scholar 

  • Yu, D. W. et al. Biodiversity soup: Metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol. Evol. 3, 613–623 (2012).

    Article 

    Google Scholar 

  • Gaston, K. J. & Lawton, J. H. Patterns in the distribution and abundance of insect populations. Nature 331, 709–712 (1988).

    Article 

    Google Scholar 

  • Liu, M., Clarke, L. J., Baker, S. C., Jordan, G. J. & Burridge, C. P. A practical guide to DNA metabarcoding for entomological ecologists. Ecol. Entomol. 45, 373–385 (2019).

    Article 

    Google Scholar 

  • Zinger, L. et al. DNA metabarcoding—Need for robust experimental designs to draw sound ecological conclusions. Mol. Ecol. 28, 1857–1862 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Ficetola, G. F. et al. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol. Ecol. Res. 15, 543–556 (2015).

    CAS 
    Article 

    Google Scholar 

  • Porter, T. M. & Hajibabaei, M. Automated high throughput animal CO1 metabarcode classification. Sci. Rep. 8, 1–10. https://doi.org/10.1038/s41598-018-22505-4 (2018).

    CAS 
    Article 

    Google Scholar 

  • Marquina, D., Esparza-Salas, R., Roslin, T. & Ronquist, F. Establishing arthropod community composition using metabarcoding: Surprising inconsistencies between soil samples and preservative ethanol and homogenate from Malaise trap catches. Mol. Ecol. Res. 19, 1516–1530 (2019).

    CAS 
    Article 

    Google Scholar 

  • Porter, T. M. et al. Variations in terrestrial arthropod DNA metabarcoding methods recovers robust beta diversity but variable richness and site indicators. Sci. Rep. 9, 1–11. https://doi.org/10.1038/s41598-019-54532-0 (2019).

    CAS 
    Article 

    Google Scholar 

  • Basset, Y. et al. Cross-continental comparisons of butterfly assemblages in tropical rainforests: Implications for biological monitoring. Insect. Conserv. Divers 6, 223–233 (2013).

    Article 

    Google Scholar 

  • Ryder Wilkie, K. T., Mertl, A. L. & Traniello, J. F. A. Biodiversity below ground: Probing the subterranean ant fauna of Amazonia. Naturwissenschaften 94, 725–731 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • André, H. M., Ducarme, X. & Lebrun, P. Soil biodiversity: Myth, reality or conning?. Oikos 96, 3–24 (2002).

    Article 

    Google Scholar 

  • Wilson, J. J. DNA barcodes for insects. In DNA Barcodes: Methods and Protocols (eds Kress, W. J. & Erickson, D. L.) 17–46 (Springer, 2012).

  • Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Gibson, J. F. et al. Large-scale biomonitoring of remote and threatened ecosystems via high-throughput sequencing. PLoS ONE 10, e0138432. https://doi.org/10.1371/journal.pone.0138432 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hajibabaei, M., Porter, T. M., Wright, M. & Rudar, J. COI metabarcoding primer choice affects richness and recovery of indicator taxa in freshwater systems. PLoS One 14, e0220953. https://doi.org/10.1371/journal.pone.0220953 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bush, A. et al. DNA metabarcoding reveals metacommunity dynamics in a threatened boreal wetland wilderness. PNAS 117, 8539–8545 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Calderón-Sanou, I. et al. From environmental DNA sequences to ecological conclusions: How strong is the influence of methodological choices?. J. Biogeogr. 47, 193–206 (2020).

    Article 

    Google Scholar 

  • Schloss, P. D. Reintroducing mothur: 10 years later. Appl. Env. Microbiol. 86, e02343-19. https://doi.org/10.1128/AEM.02343-19 (2020).

    Article 

    Google Scholar 

  • Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Boyer, F. et al. Obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecol. Res. 16, 176–182 (2016).

    CAS 
    Article 

    Google Scholar 

  • Ratnasingham, S. mBRAVE: The multiplex barcode research and visualization environment. Biodivers. Inf. Sci. Stand. 3, e37986. https://doi.org/10.3897/biss.3.37986 (2019).

    Article 

    Google Scholar 

  • Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584. https://doi.org/10.7717/peerj.2584 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gaston, K. J. Rarity (Springer, 1994).

  • Kaspari, M. Litter ant patchiness at the 1–m2 scale: Disturbance dynamics in three Neotropical forests. Oecologia 107, 265–273 (1996).

    PubMed 
    Article 

    Google Scholar 

  • Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Article 

    Google Scholar 

  • Foster, Z. S. L., Sharpton, T. J. & Grünwald, N. J. Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput. Biol. 13, e1005404. https://doi.org/10.1371/journal.pcbi.1005404 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-3 (2018).

  • Hyams, D. G. CurveExpert Professional. A Comprehensive Data Analysis Software System for Windows, Mac, and Linux. Version 1.2.2. www.curveexpert.net (2011). Accessed 1 Jan 2022.

  • Deagle, B. E. et al. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data?. Mol. Ecol. 28, 391–406 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Ficetola, G. F. et al. An In Silico approach for the evaluation of DNA barcodes. BMC Genom. 11, 434. https://doi.org/10.1186/1471-2164-11-434 (2010).

    CAS 
    Article 

    Google Scholar 

  • Auer, L., Mariadassou, M., O’Donohue, M., Klopp, C. & Hernandez-Raquet, G. Analysis of large 16S rRNA Illumina data sets: Impact of singleton read filtering on microbial community description. Mol. Ecol. Res. 17, e122–e132. https://doi.org/10.1111/1755-0998.12700 (2017).

    CAS 
    Article 

    Google Scholar 

  • Novotný, V. & Basset, Y. Rare species in communities of tropical insect herbivores: Pondering the mystery of singletons. Oikos 89, 564–572 (2000).

    Article 

    Google Scholar 

  • Seifert, B. & Goropashnaya, A. V. Ideal phenotypes and mismatching haplotypes-errors of mtDNA treeing in ants (Hymenoptera: Formicidae) detected by standardized morphometry. Org. Divers. Evol. 4, 295–305 (2004).

    Article 

    Google Scholar 

  • Gotzek, D., Clarke, J. & Shoemaker, D. Mitochondrial genome evolution in fire ants (Hymenoptera: Formicidae). BMC Evol. Biol. 10, 300. https://doi.org/10.1186/1471-2148-10-300 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meza-Lázaro, R. N., Poteaux, C., Bayona-Vásquez, N. J., Branstetter, M. G. & Zaldívar-Riverón, A. Extensive mitochondrial heteroplasmy in the neotropical ants of the Ectatomma ruidum complex (Formicidae: Ectatomminae). Mit. DNA Part A 29, 1203–1214 (2018).

    Article 

    Google Scholar 

  • Saitoh, S. et al. A quantitative protocol for DNA metabarcoding of springtails (Collembola). Genome 59, 705–723 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Elbrecht, V. et al. Validation of COI metabarcoding primers for terrestrial arthropods. PeerJ 7, e7745. https://doi.org/10.7717/peerj.7745 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schenk, J., Geisen, S., Kleinbölting, N. & Traunspurger, W. Metabarcoding data allow for reliable biomass estimates in the most abundant animals on earth. Metabarcoding Metagenom. 3, e46704. https://doi.org/10.3897/mbmg.3.46704 (2019).

    Article 

    Google Scholar 

  • Elbrecht, V. & Leese, F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass—Sequence relationships with an innovative metabarcoding protocol. PLoS One 10, e0130324. https://doi.org/10.1371/journal.pone.0130324 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bista, I. et al. Performance of amplicon and shotgun sequencing for accurate biomass estimation in invertebrate community samples. Mol. Ecol. Res. 18, 1020–1034 (2018).

    CAS 
    Article 

    Google Scholar 

  • Ji, Y. et al. SPIKEPIPE: A metagenomic pipeline for the accurate quantification of eukaryotic species occurrences and intraspecific abundance change using DNA barcodes or mitogenomes. Mol. Ecol. Res. 20, 256–267 (2020).

    CAS 
    Article 

    Google Scholar 

  • Steiner, F. M. et al. Tetramorium tsushimae, a new invasive ant in North America. Biol. Invasions 8, 117–123 (2006).

    Article 

    Google Scholar 

  • Wetterer, J. K. Worldwide spread of the penny ant, Tetramorium bicarinatum (Hymenoptera: Formicidae). Sociobiology 54, 811–830 (2009).

    Google Scholar 

  • Roisin, Y. et al. Vertical stratification of the termite assemblage in a neotropical forest. Oecologia 149, 301–311 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Basset, Y. et al. Methodological considerations for monitoring soil/litter arthropods in tropical rainforests using DNA metabarcoding, with a special emphasis on ants, springtails and termites. Metabarcoding Metagenom. 4, 151–163. https://doi.org/10.3897/mbmg.4.58572 (2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Donald Sadoway wins European Inventor Award for liquid metal batteries

    A nitrite-oxidising bacterium constitutively consumes atmospheric hydrogen