in

Warming-induced increase in carbon uptake is linked to earlier spring phenology in temperate and boreal forests

  • Chuine, I. Why does phenology drive species distribution? Philos. Trans. 365, 3149–3160 (2010).

    Google Scholar 

  • Chuine, I. & Beaubien, E. G. Phenology is a major determinant of tree species range. Ecol. Lett. 4, 500–510 (2001).

    Google Scholar 

  • Richardson, D. A. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173 (2013).

    ADS 

    Google Scholar 

  • Tang, J. et al. Emerging opportunities and challenges in phenology: a review. Ecosphere 7, e01436 (2016).

    Google Scholar 

  • Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Chang. Biol. 25, 1922–1940 (2019).

    ADS 
    MathSciNet 
    PubMed 

    Google Scholar 

  • Fu, Y. H. et al. Three times greater weight of daytime than of night‐time temperature on leaf unfolding phenology in temperate trees. N. Phytol. 212, 590–597 (2016).

    CAS 

    Google Scholar 

  • Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Chang. Biol. 12, 1969–1976 (2006).

    ADS 

    Google Scholar 

  • Piao, S. et al. Leaf onset in the northern hemisphere triggered by daytime temperature. Nat. Commun. 6, 6911 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Penuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change. Science 324, 887–888 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lang, G. A. Dormancy: a new universal terminology. HortScience 22, 817–820 (1987).

    Google Scholar 

  • Perry, T. O. Dormancy of trees in winter. Science 171, 29–36 (1971).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, J. et al. Intra-annual wood formation of subtropical Chinese red pine shows better growth in dry season than wet season. Tree Physiol. 38, 1225–1236 (2018).

    PubMed 

    Google Scholar 

  • Knowles, J. F. et al. Montane forest productivity across a semi-arid climatic gradient. Glob. Chang. Biol. 26, 6945–6958 (2020).

    ADS 
    PubMed 

    Google Scholar 

  • Richard, S., Kjellsen, T. D., Schaberg, P. G. & Murakami, P. F. Dynamics of low-temperature acclimation in temperate and boreal conifer foliage in a mild winter climate. Tree Physiol. 28, 1365–1374 (2008).

    Google Scholar 

  • Roxas, A. A., Orozco, J., Guzmán-Delgado, P. & Zwieniecki, M. A. Spring phenology is affected by fall non-structural carbohydrate concentration and winter sugar redistribution in three Mediterranean nut tree species. Tree Physiol. 41, 1425–1438 (2021).

    CAS 

    Google Scholar 

  • Palacio, S., Martínez, M. M. & Montserrat-Martí, G. Seasonal dynamics of non-structural carbohydrates in two species of mediterranean sub-shrubs with different leaf phenology. Environ. Exp. Bot. 59, 34–42 (2007).

    CAS 

    Google Scholar 

  • Fierravanti, A., Rossi, S., Kneeshaw, D., Grandpré, L. D. & Deslauriers, A. Low non-structural carbon accumulation in spring reduces growth and increases mortality in conifers defoliated by spruce budworm. Front. For. Glob. Change. 2, 1–13 (2019).

    Google Scholar 

  • Oberhuber, W., Gruber, A., Lethaus, G., Winkler, A. & Wieser, G. Stem girdling indicates prioritized carbon allocation to the root system at the expense of radial stem growth in Norway spruce under drought conditions. Environ. Exp. Bot. 138, 109–118 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pérez-de-Lis, G., Rossi, S., Vázquez-Ruiz, R. A., Rozas, V. & García-González, I. Do changes in spring phenology affect earlywood vessels? Perspective from the xylogenesis monitoring of two sympatric ring-porous oaks. N. Phytol. 209, 521–530 (2016).

    Google Scholar 

  • Weber, R., Gessler, A. & Hoch, G. High carbon storage in carbon-limited trees. N. Phytol. 222, 171–182 (2019).

    CAS 

    Google Scholar 

  • Zani, D., Crowther, T. W., Lidong, M., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Dusenge, M. E., Duarte, A. G. & Way, D. A. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. N. Phytol. 221, 32–49 (2019).

    CAS 

    Google Scholar 

  • Lin, Y.-S., Medlyn, B. E. & Ellsworth, D. Temperature responses of leaf net photosynthesis: the role of component processes. Tree Physiol. 32, 219–231 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Terashima, I. & Hikosaka, K. Comparative ecophysiology of leaf and canopy photosynthesis. Plant Cell Environ. 18, 1111–1128 (1995).

    Google Scholar 

  • Liang, J., Xia, J., Liu, L. & Wan, S. Global patterns of the responses of leaf-level photosynthesis and respiration in terrestrial plants to experimental warming. J. Plant. Ecol. 6, 437–447 (2013).

    Google Scholar 

  • Duffy, K. A. et al. How close are we to the temperature tipping point of the terrestrial biosphere? Sci. Adv. 7, eaay1052 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Güsewell, S., Furrer, R., Gehrig, R. & Pietragalla, B. Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason. Glob. Chang. Biol. 23, 5189–5202 (2017).

    ADS 
    PubMed 

    Google Scholar 

  • Keenan, T. F., Richardson, A. D. & Hufkens, K. On quantifying the apparent temperature sensitivity of plant phenology. N. Phytol. 225, 1033–1040 (2020).

    Google Scholar 

  • Klein, T., Vitasse, Y. & Hoch, G. Coordination between growth, phenology and carbon storage in three coexisting deciduous tree species in a temperate forest. Tree Physiol. 36, 847–855 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Kagawa, A., Sugimoto, A. & Maximov, T. C. Seasonal course of translocation, storage and remobilization of 13C pulse-labeled photoassimilate in naturally growing Larix gmelinii saplings. N. Phytol. 171, 793–804 (2010).

    Google Scholar 

  • Rinne, K. T. et al. Examining the response of needle carbohydrates from Siberian larch trees to climate using compound-specific δ(13) C and concentration analyses. Plant Cell Environ. 38, 2340–2352 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Schädel, C., Blöchl, A., Richter, A. & Hoch, G. Short-term dynamics of nonstructural carbohydrates and hemicelluloses in young branches of temperate forest trees during bud break. Tree Physiol. 29, 901–911 (2009).

    PubMed 

    Google Scholar 

  • Kaurin, A., Junttila, O. & Hanson, J. Seasonal changes in frost hardiness in cloudberry (Rubus chamaemorus) in relation to carbohydrate content with special reference to sucrose. Physiol. Plant. 52, 310–314 (1981).

    CAS 

    Google Scholar 

  • Shahba, M. A., Qian, Y. L., Hughes, H. G., Koski, A. J. & Christensen, D. Relationships of soluble carbohydrates and freeze tolerance in saltgrass. Crop Sci. 43, 2148–2153 (2003).

    CAS 

    Google Scholar 

  • Wang, J. et al. Contrasting temporal variations in responses of leaf unfolding to daytime and nighttime warming. Glob. Chang. Biol. 27, 5084–5093 (2021).

    PubMed 

    Google Scholar 

  • Marchand, L. J. et al. Inter-individual variability in spring phenology of temperate deciduous trees depends on species, tree size and previous year autumn phenology. Agric Meteorol. 290, 108031 (2020).

    Google Scholar 

  • Shen, M. et al. Can changes in autumn phenology facilitate earlier green-up date of northern vegetation? Agric Meteorol. 291, 108077 (2020).

    Google Scholar 

  • Chen, L. et al. Long-term changes in the impacts of global warming on leaf phenology of four temperate tree species. Glob. Chang. Biol. 25, 997–1004 (2019).

    ADS 
    PubMed 

    Google Scholar 

  • Hanninen, H. Boreal and temperate trees in a changing climate: modelling the ecophysiology of seasonality. (Springer, 2016).

  • Dreyer, E., Le Roux, X., Montpied, P., Daudet, F. A. & Masson, F. Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species. Tree Physiol. 21, 223–232 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Devi, A. F. & Garkoti, S. C. Variation in evergreen and deciduous species leaf phenology in Assam. India Trees 27, 985–997 (2013).

    Google Scholar 

  • Bai, K., He, C., Wan, X. & Jiang, D. Leaf economics of evergreen and deciduous tree species along an elevational gradient in a subtropical mountain. AoB PLANTS 7, plv064 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Qi, J., Fan, Z., Fu, P., Zhang, Y. & Sterck, F. Differential determinants of growth rates in subtropical evergreen and deciduous juvenile trees: carbon gain, hydraulics and nutrient-use efficiencies. Tree Physiol. 41, 12–23 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Fyllas, N. M. et al. Functional trait variation among and within species and plant functional types in mountainous mediterranean forests. Front. Plant Sci. 11, 1–18 (2020).

    Google Scholar 

  • Templ, B. et al. Pan European Phenological database (PEP725): a single point of access for European data. Int J. Biometeorol. 62, 1109–1113 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • Leys, C., Ley, C., Klein, O., Bernard, P. & Licata, L. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49, 764–766 (2013).

    Google Scholar 

  • Richardson, A. D. et al. Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery. Sci. Data. 5, 180028 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Klosterman, S. et al. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences 11, 4305–4320 (2014).

    ADS 

    Google Scholar 

  • Zhang, Y. et al. Seasonal and interannual changes in vegetation activity of tropical forests in Southeast Asia. Agric. For. Meteorol. 224, 1–10 (2016).

    ADS 

    Google Scholar 

  • Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).

    ADS 

    Google Scholar 

  • Wang, X. et al. No trends in spring and autumn phenology during the global warming hiatus. Nat. Commun. 10, 2389 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X. et al. Validation of MODIS-GPP product at 10 flux sites in northern China. Int. J. Remote Sens. 34, 587–599 (2013).

    Google Scholar 

  • Julien, Y. & Sobrino, J. Global land surface phenology trends from GIMMS database. Int J. Remote Sens. 30, 3495–3513 (2009).

    Google Scholar 

  • Zhang, X. et al. Monitoring vegetation phenology using MODIS. Remote Sens Environ. 84, 471–475 (2003).

    ADS 

    Google Scholar 

  • Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data. 7, 1–27 (2020).

    Google Scholar 

  • Huang, K. et al. Enhanced peak growth of global vegetation and its key mechanisms. Nat. Ecol. Evol. 2, 1897–1905 (2018).

    PubMed 

    Google Scholar 

  • Tang, Y., Xu, X., Zhou, Z., Qu, Y. & Sun, Y. Estimating global maximum gross primary productivity of vegetation based on the combination of MODIS greenness and temperature data. Ecol. Inform. 63, 101307 (2021).

    Google Scholar 

  • Xia, J. et al. Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proc. Natl. Acad. Sci. U.S.A. 112, 2788–2793 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kalman, D. A singularly valuable decomposition: The SVD of a matrix. Coll. Math. J. 27, 2–23 (1996).

    MathSciNet 

    Google Scholar 

  • Biriukova, K. et al. Performance of singular spectrum analysis in separating seasonal and fast physiological dynamics of solar-induced chlorophyll fluorescence and PRI optical signals. J. Geophys. Res. Biogeosci. 126, e2020JG006158 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3227–3246 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, C. et al. Interannual variability of net carbon exchange is related to the lag between the end-dates of net carbon uptake and photosynthesis: Evidence from long records at two contrasting forest stands. Agric. For. Meteorol. 164, 29–38 (2012).

    ADS 

    Google Scholar 

  • Cornes, R., der Schrier, G. V., den Besselaar, E. J. M. V. & Jones, P. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 123, 9391–9409 (2018).

    Google Scholar 

  • Hijmans, R. J. et al. raster: Geographic data analysis and modeling. https://CRAN.R-project.org/package=raster. R package version 3.5-15 (2022).

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2021).

  • Erb, I. Partial correlations in compositional data analysis. Comput. Geosci. 6, 100026 (2020).

    Google Scholar 

  • Vitasse, Y., Signarbieux, C. & Fu, Y. H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl Acad. Sci. U.S.A. 115, 1004–1008 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Kim, S. ppcor: Partial and semi-partial (part) correlation. https://CRAN.R-project.org/package=ppcor. R package version 1.1 (2015).

  • Lefcheck, J. S. piecewiseSEM: piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Google Scholar 

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    MATH 

    Google Scholar 

  • Valavi, R., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. Modelling species presence-only data with random forests. Ecography 44, 1731–1742 (2021).

    Google Scholar 

  • Freeman, E. A., Moisen, G. G., Coulston, J. W. & Wilson, B. T. Random forests and stochastic gradient boosting for predicting tree canopy cover: comparing tuning processes and model performance. Can. J. For. Res. 46, 323–339 (2016).

    Google Scholar 

  • Liaw, A. & Wiener, M. Classification and regression by randomForest. R. N. 2, 18–22 (2002).

    Google Scholar 

  • Cutler, D. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).

    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Mucin induces CRISPR-Cas defense in an opportunistic pathogen

    Making hydrogen power a reality