Pauly, D. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 10, 430 (1995).
Google Scholar
FAO. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals. (2018).
Teh, L. C. L. & Sumaila, U. R. Contribution of marine fisheries to worldwide employment. Fish Fish. 14, 77–88 (2013).
Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315 (2007).
Google Scholar
Kaiser, M. J., Collie, J. S., Hall, S. J., Jennings, S. & Poiner, I. R. Modification of marine habitats by trawling activities: Prognosis and solutions. Fish Fish. 3, 114–136 (2002).
Hiddink, J. G. et al. Selection of indicators for assessing and managing the impacts of bottom trawling on seabed habitats. J. Appl. Ecol. 57, 1199–1209 (2020).
Funes, M., Marinao, C. & Galván, D. E. Does trawl fisheries affect the diet of fishes? A stable isotope analysis approach. Isotop. Environ. Health Stud. 10, 1–17 (2019).
Preciado, I. et al. Small-scale spatial variations of trawling impact on food web structure. Ecol. Ind. 98, 442–452 (2019).
Su, L. et al. Decadal-scale variation in mean trophic level in Beibu Gulf based on bottom-trawl survey data. Mar. Coast. Fish. 13, 174–182 (2021).
Jennings, S., van Hal, R., Hiddink, J. G. & Maxwell, T. A. D. Fishing effects on energy use by North Sea fishes. J. Sea Res. 60, 74–88 (2008).
Google Scholar
de Ruiter, P. C., Neutel, A.-M. & Moore, J. C. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269, 1257–1260 (1995).
Google Scholar
Bascompte, J. Disentangling the web of life. Science 325, 416–419 (2009).
Google Scholar
Wootton, K. L. Omnivory and stability in freshwater habitats: Does theory match reality?. Freshw. Biol. 62, 821–832 (2017).
Borrelli, J. J. & Ginzburg, L. R. Why there are so few trophic levels: Selection against instability explains the pattern. Food Webs 1, 10–17 (2014).
Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl. Acad. Sci. USA 108, 3648–52 (2011).
Google Scholar
Márquez-Velásquez, V., Raimundo, R. L. G., de Souza Rosa, R. & Navia, A. F. The use of ecological networks as tools for understanding and conserving marine biodiversity. In Marine Coastal Ecosystems Modelling and Conservation: Latin American Experiences, pp 179–202 (eds Ortiz, M. & Jordán, F.) (Springer, 2021). https://doi.org/10.1007/978-3-030-58211-1_9.
Google Scholar
Neutel, A.-M. & Thorne, M. A. S. Interaction strengths in balanced carbon cycles and the absence of a relation between ecosystem complexity and stability. Ecol. Lett. 17, 651–661 (2014).
Google Scholar
Neutel, A.-M. & Thorne, M. A. S. Beyond connectedness: Why pairwise metrics cannot capture community stability. Ecol. Evol. 6, 7199–7206 (2016).
Google Scholar
Saravia, L. A., Marina, T. I., Kristensen, N. P., De Troch, M. & Momo, F. R. Ecological network assembly: How the regional metaweb influences local food webs. J. Anim. Ecol. 3, 25 (2021).
Góngora, M. E., GonzalezZevallos, D., Pettovello, A. & Mendia, L. Caracterizacion de las principales pesquerias del golfo San Jorge Patagonia, Argentina. Latin Am. J. Aquat. Res. 40, 1–11 (2012).
Yorio, P. Marine protected areas, spatial scales, and governance: Implications for the conservation of breeding seabirds. Conserv. Lett. 2, 171–178 (2009).
Rincón-Díaz, M. P., Bovcon, N. D., Cochia, P. D., Góngora, M. E. & Galván, D. E. Fish functional diversity as an indicator of resilience to industrial fishing in Patagonia Argentina. J. Fish Biol. 99, 1650–1667 (2021).
Google Scholar
González-Zevallos, D. & Yorio, P. Consumption of discards and interactions between Black-browed Albatrosses (Thalassarche melanophrys) and Kelp Gulls (Larus dominicanus) at trawl fisheries in Golfo San Jorge, Argentina. J. Ornithol. 152, 827–838 (2011).
Vinuesa, J. H. & Varisco, M. Trophic ecology of the lobster krill Munida gregaria in San Jorge Gulf, Argentina. Investig. Mar. 35, 25–34 (2007).
Belleggia, M. et al. Trophic ecology of yellownose skate Zearaja chilensis, a top predator in the south-western Atlantic Ocean. J. Fish Biol. 88, 1070–1087 (2016).
Google Scholar
Pasti, A. T. et al. The diet of Mustelus schmitti in areas with and without commercial bottom trawling (Central Patagonia, Southwestern Atlantic): Is it evidence of trophic interaction with the Patagonian shrimp fishery?. Food Webs 29, e00214 (2021).
Yorio, P., Bertellotti, M., Gandini, P. & Frere, E. Kelp gulls Larus dominicanus breeding on the argentine coast: Population status and relationship with coastal management and conservation. Mar. Ornithol. 26, 11–18 (1998).
Dans, S. et al. El golfo san jorge como área prioritaria de investigación, manejo y conservación en el marco de la iniciativa pampa azul. Rev. Cie. Investig. 71, 21–43 (2021).
de la Garza, J. M., Ferníndez, M. & Ravalli, C. Langostino patagónico (Pleoticus muelleri). Inf. Campa 20, 20 (2013).
Varisco, M. & La Vinuesa, J. H. Alimentación de Munida gregaria (Fabricius, 1793) (Crustacea:Anomura:Galatheidae) en fondos de pesca del Golfo San Jorge, Argentina. Rev. Biol. Mar. Oceanogr. 42, 221–229 (2007).
Tschopp, A., Cristiani, F., García, N. A., Crespo, E. A. & Coscarella, M. A. Trophic niche partitioning of five skate species of genus Bathyraja in northern and central Patagonia, Argentina. J. Fish. Biol. 97, 656–667 (2020).
Google Scholar
Kasinsky, T., Yorio, P., Dell’Arciprete, P., Marinao, C. & Suárez, N. Geographical differences in sex-specific foraging behaviour and diet during the breeding season in the opportunistic Kelp Gull (Larus dominicanus). Mar. Biol. 168, 14 (2021).
Google Scholar
González-Zevallos, D. & Yorio, P. Seabird use of discards and incidental captures at the Argentine hake trawl fishery in the Golfo San Jorge, Argentina. Mar. Ecol. Progress Ser. 316, 175–183 (2006).
Google Scholar
Crespo, E. A. et al. Direct and indirect effects of the Highseas fisheries on the marine mammal populations in the northern and central Patagonian coast. J. Northw. Atl. Fish. Sci. 22, 189–207 (1997).
Gandini, P. A., Frere, E., Pettovello, A. D. & Cedrola, P. V. Interaction between Magellanic Penguins and Shrimp Fisheries in Patagonia, Argentina. Condor 101, 783–789 (1999).
Fu, C. et al. Making ecological indicators management ready: Assessing the specificity, sensitivity, and threshold response of ecological indicators. Ecol. Ind. 105, 16–28 (2019).
Olivier, P. et al. Exploring the temporal variability of a food web using long-term biomonitoring data. Ecography 42, 2107–2121 (2019).
Bersier, L.-F., Banašek-Richter, C. & Cattin, M.-F. Quantitative descriptors of food-web matrices. Ecology 83, 2394–2407 (2002).
Google Scholar
Gellner, G. & McCann, K. Reconciling the omnivory-stability debate. Am. Nat. 179, 22–37 (2012).
Google Scholar
Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 26113 (2004).
Google Scholar
Reichardt, J. & Bornholdt, S. Statistical mechanics of community detection. Phys. Rev. E 74, 16110 (2006).
Google Scholar
Allesina, S. & Pascual, M. Network structure, predator-prey modules, and stability in large food webs. Theor. Ecol. 1, 55–64 (2008).
Strona, G., Nappo, D., Boccacci, F., Fattorini, S. & San-Miguel-Ayanz, J. A fast and unbiased procedure to randomize ecological binary matrices with fixed row and column totals. Nat. Commun. 5, 4114 (2014).
Google Scholar
Scholz, F. W. & Stephens, M. A. K-sample Anderson–Darling tests. J. Am. Stat. Assoc. 82, 918–924 (1987).
Google Scholar
Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 4, 863 (2013).
Google Scholar
Saravia, L. A. Multiweb: An R Package for Multiple Interaction Ecological Networks (Zenodo, 2019). https://doi.org/10.5281/zenodo.3370397.
Google Scholar
Kortsch, S. et al. Disentangling temporal food web dynamics facilitates understanding of ecosystem functioning. J. Anim. Ecol. 20, 20 (2021).
Marina, T. I. et al. Architecture of marine food webs: To be or not be a “small-world’’. PLoS One 13, 1–13 (2018).
Panel, E. P. A. Ecosystem-based Fishery Management: A Report to Congress by the Ecosystem Principles Advisory Panel. https://repository.library.noaa.gov/view/noaa/23730 (1998)
Armoškaitė, A. et al. Establishing the links between marine ecosystem components, functions and services: An ecosystem service assessment tool. Ocean Coast. Manage. 193, 105229 (2020).
Navia, A. F., Cruz-Escalona, V. H., Giraldo, A. & Barausse, A. The structure of a marine tropical food web, and its implications for ecosystem-based fisheries management. Ecol. Model. 328, 23–33 (2016).
Agnetta, D. et al. Benthic-pelagic coupling mediates interactions in Mediterranean mixed fisheries: An ecosystem modeling approach. PLoS One 14, e0210659 (2019).
Google Scholar
Baum, J. K. et al. Collapse and conservation of shark populations in the Northwest Atlantic. Sciencehttps://doi.org/10.1126/science.1079777 (2003).
Google Scholar
Bearzi, G. et al. Overfishing and the disappearance of short-beaked common dolphins from western Greece. Endang. Species Res. 5, 1–12 (2008).
Lotze, H. K., Coll, M., Magera, A. M., Ward-Paige, C. & Airoldi, L. Recovery of marine animal populations and ecosystems. Trends Ecol. Evol. 26, 595–605 (2011).
Google Scholar
Reyes, L. M. Cetaceans of Central Patagonia, Argentina. Aquat. Mammals 32, 20–30 (2006).
Lisnizer, N., Garcia-Borboroglu, P. & Yorio, P. Spatial and temporal variation in population trends of Kelp Gulls in northern Patagonia, Argentina. Emu Austral Ornithol. 111, 259–267 (2011).
Yorio, P. et al. Population trends of Imperial Cormorants (Leucocarbo atriceps) in northern coastal Argentine Patagonia over 26 years. Emu Austral Ornithol. 120, 114–122 (2020).
Irigoyen, A. & Trobbiani, G. Depletion of trophy large-sized sharks populations of the Argentinean coast, south-western Atlantic: Insights from fishers’ knowledge. Neotrop. Ichthyol. 14, 20 (2016).
Vasas, V., Lancelot, C., Rousseau, V. & Jordán, F. Eutrophication and overfishing in temperate nearshore pelagic food webs: A network perspective. Mar. Ecol. Prog. Ser. 336, 1–14 (2007).
Google Scholar
Gilarranz, L. J., Mora, C. & Bascompte, J. Anthropogenic effects are associated with a lower persistence of marine food webs. Nat. Commun. 7, 10737 (2016).
Google Scholar
Bartley, T. J. et al. Food web rewiring in a changing world. Nat. Ecol. Evol. 3, 345–354 (2019).
Google Scholar
May, R. M. Stability and Complexity in Model Ecosystems Vol. 6 (Princeton University Press, 1974).
McCann, K. S. The diversity-stability debate. Nature 405, 228–233 (2000).
Google Scholar
van Altena, C., Hemerik, L. & de Ruiter, P. C. Food web stability and weighted connectance: The complexity-stability debate revisited. Theor. Ecol. 9, 49–58 (2016).
Dougoud, M., Vinckenbosch, L., Rohr, R. P., Bersier, L.-F. & Mazza, C. The feasibility of equilibria in large ecosystems: A primary but neglected concept in the complexity-stability debate. PLoS Comput. Biol. 14, e1005988 (2018).
Google Scholar
McCann, K. & Hastings, A. Re-evaluating the omnivory-stability relationship in food webs. Proc. R. Soc. Lond. B 264, 1249–1254 (1997).
Google Scholar
Pimm, S. L. & Lawton, J. H. On feeding on more than one trophic level. Nature 275, 542–544 (1978).
Google Scholar
Link, J. Does food web theory work for marine ecosystems?. Mar. Ecol. Prog. Ser. 230, 1–9 (2002).
Google Scholar
Bieg, C. et al. Linking humans to food webs: A framework for the classification of global fisheries. Front. Ecol. Environ. 16, 412–420 (2018).
Shephard, S. et al. Scavenging on trawled seabeds can modify trophic size structure of bottom-dwelling fish. ICES J. Mar. Sci. 71, 398–405 (2014).
Gilarranz, L. J., Rayfield, B., Liñán-Cembrano, G., Bascompte, J. & Gonzalez, A. Effects of network modularity on the spread of perturbation impact in experimental metapopulations. Science 357, 199–201 (2017).
Google Scholar
Danet, A., Mouchet, M., Bonnaffé, W., Thébault, E. & Fontaine, C. Species richness and food-web structure jointly drive community biomass and its temporal stability in fish communities. Ecol. Lett. 24, 2364–2377 (2021).
Google Scholar
Shanafelt, D. W. & Loreau, M. Stability trophic cascades in food chains. R. Soc. Open Sci. 5, 180995 (2018).
Google Scholar
Barbier, M. & Loreau, M. Pyramids and cascades: A synthesis of food chain functioning and stability. Ecol. Lett. 22, 405–419 (2019).
Google Scholar
Sánchez, M. F. et al. Caracterización ecológica del Golfo San Jorge (Argentina) mediante modelación ecotrófica multiespecífica. 30 https://www.inidep.edu.ar/wordpress/?page_id=1959 (2009)
Gaitán, E. N. Tramas Tróficas en Sistemas Frontales del Mar Argentino: Estructura, Dinámica y Complejidad Analizada Mediante Isótopos Estables (Universidad Nacional de Mar del Plata, Facultad de Ciencias Exactas y Naturales, 2012).
Pinnegar, J. K. & Polunin, N. V. C. Differential fractionation of 13C and 15N among fish tissues: Implications for the study of trophic interactions. Funct. Ecol. 13, 225–231 (1999).
Philippsen, J. S. & Benedito, E. Discrimination factor in the trophic ecology of fishes: A review about sources of variation and methods to obtain it. Oecol. Aust. 17, 205–2016 (2013).
Hussey, N. E. et al. Rescaling the trophic structure of marine food webs. Ecol. Lett. 17, 239–250 (2014).
Google Scholar
Lefebvre, S. & Dubois, S. The stony road to understand isotopic enrichment and turnover rates: Insight into the metabolic part. Vie Milieu-life Environ. 66, 305–314 (2016).
Funes, M., Irigoyen, A. J., Trobbiani, G. A. & Galván, D. E. Stable isotopes reveal different dependencies on benthic and pelagic pathways between Munida gregaria ecotypes. Food Webs 17, e00101 (2018).
Santos, B. & Villarino, M. F. Evaluación del Estado de Explotación del Efectivo sur de 41 S de la Merluza (Merluccius hubbsi) y Estimación de la Captura Biológicamente Aceptable Para 2014. Informe Técnico Oficial INIDEP. 1–30 (2013).
Belleggia, M., Giberto, D. & Bremec, C. Adaptation of diet in a changed environment: Increased consumption of lobster krill Munida gregaria (Fabricius, 1793) by Argentine hake. Mar. Ecol. 38, e12445 (2017).
Google Scholar
Diez, M. J., Cabreira, A. G., Madirolas, A. & Lovrich, G. A. Hydroacoustical evidence of the expansion of pelagic swarms of Munida gregaria (Decapoda, Munididae) in the Beagle Channel and the Argentine Patagonian Shelf, and its relationship with habitat features. J. Sea Res. 114, 1–12 (2016).
Google Scholar
Ravalli, C., De La Garza, J. & Greco, L. L. Distribución de los morfotipos gregaria y subrugosa de la langostilla Munida gregaria (Decapoda, Galatheidae) en el Golfo San Jorge en la campaña de verano AE-01/2011. Integración de resultados con las campañas 2009 y 2010. Rev. Invest. Desarr. Pesq. 22, 29–41 (2013).
Belleggia, M. et al. Are hakes truly opportunistic feeders? A case of prey selection by the Argentine hake Merluccius hubbsi off southwestern Atlantic. Fish. Res. 214, 166–174 (2019).
Roux, A., Piñero, R., Moriondo, P. & Fernández, M. Diet of the red shrimp Pleoticus muelleri (Bate, 1888) in Patagonian fishing grounds, Argentine. Rev. Biol. Mar. Oceanogr. 44, 25 (2009).
de la Garza, J. et al. An Overview of the Argentine Red Shrimp (Pleoticus muelleri, Decapoda, Solenoceridae) Fishery in Argentina: Biology, Fishing, Management and Ecological Interactions (Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), 2017).
Sánchez, M. F. & Prenski, L. B. Ecología trófica de peces demersales en el Golfo San Jorge. Trophic Ecol. Demersal Fish San Jorge Gulf 10, 57–71 (1996).
Copello, S., Quintana, F. & Pérez, F. Diet of the southern giant petrel in Patagonia: Fishery-related items and natural prey. Endang. Species Res. 6, 15–23 (2008).
Alonso, R. B. et al. The opportunistic sense: The diet of Argentine hake Merluccius hubbsi reflects changes in prey availability. Region. Stud. Mar. Sci. 27, 100540 (2019).
Marón, C. F. et al. Increased wounding of southern right whale (Eubalaena australis) calves by kelp gulls (Larus dominicanus) at Península Valdés, Argentina. PLoS One 10, e0139291 (2015).
Google Scholar
Fazio, A., Argüelles, M. B. & Bertellotti, M. Change in southern right whale breathing behavior in response to gull attacks. Mar. Biol. 162, 267–273 (2015).
Pocock, M. J. O., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).
Google Scholar
Kéfi, S. et al. Network structure beyond food webs: Mapping non-trophic and trophic interactions on Chilean rocky shores. Ecology 96, 291–303 (2015).
Mougi, A. The roles of amensalistic and commensalistic interactions in large ecological network stability. Sci. Rep. 6, 29929 (2016).
Google Scholar
Mougi, A. & Kondoh, M. Diversity of interaction types and ecological community stability. Science 337, 349–351 (2012).
Google Scholar
Kéfi, S., Miele, V., Wieters, E. A., Navarrete, S. A. & Berlow, E. L. How structured is the entangled bank? The surprisingly simple organization of multiplex ecological networks leads to increased persistence and resilience. PLoS Biol. 14, e1002527 (2016).
Google Scholar
Source: Ecology - nature.com