in

Chaos is not rare in natural ecosystems

  • May, R. M. Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science 186, 645–647 (1974).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Beddington, J. R., Free, C. A. & Lawton, J. H. Dynamic complexity in predator–prey models framed in difference equations. Nature 255, 58–60 (1975).

    Article 

    Google Scholar 

  • Hastings, A., Hom, C. L., Ellner, S., Turchin, P. & Godfray, H. C. J. Chaos in ecology: is Mother Nature a strange attractor? Annu. Rev. Ecol. Syst. 24, 1–33 (1993).

    Article 

    Google Scholar 

  • Cressie, N. & Wikle, C. K. Statistics for Spatio-Temporal Data (John Wiley & Sons, 2011).

  • The State of World Fisheries and Aquaculture 2020 (FAO, 2020).

  • Hastings, A. & Powell, T. Chaos in a three-species food chain. Ecology 72, 896–903 (1991).

    Article 

    Google Scholar 

  • Huisman, J. & Weissing, F. J. Biodiversity of plankton by species oscillations and chaos. Nature 402, 407–410 (1999).

    Article 

    Google Scholar 

  • Doebeli, M. & Ispolatov, I. Chaos and unpredictability in evolution. Evolution 68, 1365–1373 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Pearce, M. T., Agarwala, A. & Fisher, D. S. Stabilization of extensive fine-scale diversity by ecologically driven spatiotemporal chaos. Proc. Natl Acad. Sci. USA 117, 14572–14583 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Costantino, R. F., Desharnais, R. A., Cushing, J. M. & Dennis, B. Chaotic dynamics in an insect population. Science 275, 389–391 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Becks, L., Hilker, F. M., Malchow, H., Jürgens, K. & Arndt, H. Experimental demonstration of chaos in a microbial food web. Nature 435, 1226–1229 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Benincá, E. et al. Chaos in a long-term experiment with a plankton community. Nature 451, 822–825 (2008).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Tilman, D. & Wedin, D. Oscillations and chaos in the dynamics of a perennial grass. Nature 353, 653–655 (1991).

    Article 

    Google Scholar 

  • Turchin, P. & Ellner, S. P. Living on the edge of chaos: population dynamics of fennoscandian voles. Ecology 81, 3099–3116 (2000).

    Article 

    Google Scholar 

  • Ferrari, M. J. et al. The dynamics of measles in sub-Saharan Africa. Nature 451, 679–684 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Benincà, E., Ballantine, B., Ellner, S. P. & Huisman, J. Species fluctuations sustained by a cyclic succession at the edge of chaos. Proc. Natl Acad. Sci. USA 112, 6389–6394 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Hassell, M. P., Lawton, J. H. & May, R. M. Patterns of dynamical behaviour in single-species populations. J. Anim. Ecol. 45, 471–486 (1976).

    Article 

    Google Scholar 

  • Sibly, R. M., Barker, D., Hone, J. & Pagel, M. On the stability of populations of mammals, birds, fish and insects. Ecol. Lett. 10, 970–976 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Shelton, A. O. & Mangel, M. Fluctuations of fish populations and the magnifying effects of fishing. Proc. Natl Acad. Sci USA. 108, 7075–7080 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Salvidio, S. Stability and annual return rates in amphibian populations. Amphib. Reptil. 32, 119–124 (2011).

    Article 

    Google Scholar 

  • Snell, T. W. & Serra, M. Dynamics of natural rotifer populations. Hydrobiologia 368, 29–35 (1998).

    Article 

    Google Scholar 

  • Gross, T., Ebenhöh, W. & Feudel, U. Long food chains are in general chaotic. Oikos 109, 135–144 (2005).

    Article 

    Google Scholar 

  • Ispolatov, I., Madhok, V., Allende, S. & Doebeli, M. Chaos in high-dimensional dissipative dynamical systems. Sci. Rep. 5, 12506 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Clark, T. J. & Luis, A. D. Nonlinear population dynamics are ubiquitous in animals. Nat. Ecol. Evol. 4, 75–81 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sivakumar, B., Berndtsson, R., Olsson, J. & Jinno, K. Evidence of chaos in the rainfall-runoff process. Hydrol. Sci. J. 46, 131–145 (2001).

    CAS 
    Article 

    Google Scholar 

  • Hanski, I., Turchin, P., Korpimäki, E. & Henttonen, H. Population oscillations of boreal rodents: regulation by mustelid predators leads to chaos. Nature 364, 232–235 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Turchin, P. & Taylor, A. D. Complex dynamics in ecological time series. Ecology 73, 289–305 (1992).

    Article 

    Google Scholar 

  • Munch, S. B., Brias, A., Sugihara, G. & Rogers, T. L. Frequently asked questions about nonlinear dynamics and empirical dynamic modelling. ICES J. Mar. Sci. 77, 1463–1479 (2020).

    Article 

    Google Scholar 

  • Sugihara, G. & May, R. M. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344, 734–741 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ellner, S. P. & Turchin, P. Chaos in a noisy world: new methods and evidence from time-series analysis. Am. Nat. 145, 343–375 (1995).

    Article 

    Google Scholar 

  • Nychka, D., Ellner, S., Gallant, A. R. & McCaffrey, D. Finding chaos in noisy systems. J. R. Stat. Soc. B 54, 399–426 (1992).

    Google Scholar 

  • Webber, C. L. & Zbilut, J. P. Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76, 965–973 (1994).

    PubMed 
    Article 

    Google Scholar 

  • Bandt, C. & Pompe, B. Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88, 174102 (2002).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Luque, B., Lacasa, L., Ballesteros, F. & Luque, J. Horizontal visibility graphs: exact results for random time series. Phys. Rev. E 80, 46103 (2009).

    CAS 
    Article 

    Google Scholar 

  • Toker, D., Sommer, F. T. & D’Esposito, M. A simple method for detecting chaos in nature. Commun. Biol. 3, 11 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pikovsky, A. & Politi, A. Lyapunov Exponents: A Tool to Explore Complex Dynamics (Cambridge Univ. Press, 2016).

  • Rosenstein, M. T., Collins, J. J. & De Luca, C. J. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65, 117–134 (1993).

    Article 

    Google Scholar 

  • Dämmig, M. & Mitschke, F. Estimation of Lyapunov exponents from time series: the stochastic case. Phys. Lett. A 178, 385–394 (1993).

    Article 

    Google Scholar 

  • Prendergast, J., Bazeley-White, E., Smith, O., Lawton, J. & Inchausti, P. The Global Population Dynamics Database (KNB, 2010); https://doi.org/10.5063/F1BZ63Z8

  • Thibaut, L. M. & Connolly, S. R. Hierarchical modeling strengthens evidence for density dependence in observational time series of population dynamics. Ecology 101, e02893 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Knape, J. & de Valpine, P. Are patterns of density dependence in the Global Population Dynamics Database driven by uncertainty about population abundance? Ecol. Lett. 15, 17–23 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Takens, F. in Dynamical Systems and Turbulence (eds Rand, D. A. & Young, L. S.) 366–381 (Springer, 1981).

  • Sugihara, G. Nonlinear forecasting for the classification of natural time series. Philos. Trans. R. Soc. A 348, 477–495 (1994).

    Google Scholar 

  • Loh, J. et al. The Living Planet Index: using species population time series to track trends in biodiversity. Philos. Trans. R. Soc. B 360, 289–295 (2005).

    Article 

    Google Scholar 

  • Kendall, B. E. Cycles chaos, and noise in predator–prey dynamics. Chaos Solitons Fractals 12, 321–332 (2001).

    Article 

    Google Scholar 

  • Anderson, C. N. K. et al. Why fishing magnifies fluctuations in fish abundance. Nature 452, 835–839 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Anderson, D. M. & Gillooly, J. F. Allometric scaling of Lyapunov exponents in chaotic populations. Popul. Ecol. 62, 364–369 (2020).

    Article 

    Google Scholar 

  • Graham, D. W. et al. Experimental demonstration of chaotic instability in biological nitrification. ISME J. 1, 385–393 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Turchin, P. Nonlinear time-series modeling of vole population fluctuations. Res. Popul. Ecol. 38, 121–132 (1996).

    Article 

    Google Scholar 

  • Becks, L. & Arndt, H. Different types of synchrony in chaotic and cyclic communities. Nat. Commun. 4, 1359 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Becks, L. & Arndt, H. Transitions from stable equilibria to chaos, and back, in an experimental food web. Ecology 89, 3222–3226 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Rezende, E. L., Albert, E. M., Fortuna, M. A. & Bascompte, J. Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecol. Lett. 12, 779–788 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E. & Taylor, W. W. Compartments revealed in food-web structure. Nature 426, 282–285 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • The IUCN Red List of Threatened Species Version 2020-2 (IUCN, 2020); https://www.iucnredlist.org

  • Freckleton, R. P. & Watkinson, A. R. Are weed population dynamics chaotic? J. Appl. Ecol. 39, 699–707 (2002).

    Article 

    Google Scholar 

  • May, R. M. Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on Earth and in the ocean? PLoS Biol. 9, e1001127 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Munch, S. B., Giron-Nava, A. & Sugihara, G. Nonlinear dynamics and noise in fisheries recruitment: a global meta-analysis. Fish Fish. 19, 964–973 (2018).

    Article 

    Google Scholar 

  • Boettiger, C., Harte, T., Chamberlain, S. & Ram, K. rgpdd: R Interface to the Global Population Dynamics Database. https://docs.ropensci.org/rgpdd, https://github.com/ropensci/rgpdd (2019).

  • Brook, B. W., Traill, L. W. & Bradshaw, C. J. A. Minimum viable population sizes and global extinction risk are unrelated. Ecol. Lett. 9, 375–382 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Baars, J. W. M. Autecological investigations of marine diatoms, 2. Generation times of 50 species. Hydrobiol. Bull. 15, 137–151 (1981).

    Article 

    Google Scholar 

  • Lavigne, A. S., Sunesen, I. & Sar, E. A. Morphological, taxonomic and nomenclatural analysis of species of Odontella, Trieres and Zygoceros (Triceratiaceae, Bacillariophyta) from Anegada Bay (Province of Buenos Aires, Argentina). Diatom Res. 30, 307–331 (2015).

    Article 

    Google Scholar 

  • Anderson, D. M. & Gillooly, J. F. Physiological constraints on long-term population cycles: a broad-scale view. Evol. Ecol. Res. 18, 693–707 (2017).

    Google Scholar 

  • Janes, M. J. Oviposition studies on the chinch bug, Blissus leucopterus (Say). Ann. Entomol. Soc. Am. 28, 109–120 (1935).

    Article 

    Google Scholar 

  • Cook, L. M. Food-plant specialization in the moth Panaxia dominula L. Evolution 15, 478–485 (1961).

    Article 

    Google Scholar 

  • Casey, T. M. Flight energetics of sphinx moths: power input during hovering flight. J. Exp. Biol. 64, 529–543 (1976).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kobayashi, A., Tanaka, Y. & Shimada, M. Genetic variation of sex allocation in the parasitoid wasp Heterospilus prosopidis. Evolution 57, 2659–2664 (2003).

    PubMed 
    Article 

    Google Scholar 

  • Hozumi, N. & Miyatake, T. Body-size dependent difference in death-feigning behavior of adult Callosobruchus chinensis. J. Insect Behav. 18, 557–566 (2005).

    Article 

    Google Scholar 

  • Huntley, M. E. & Lopez, M. D. G. Temperature-dependent production of marine copepods: a global synthesis. Am. Nat. 140, 201–242 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cohen, R. E. & Lough, R. G. Length–weight relationships for several copepods dominant in the Georges Bank–Gulf of Maine area. J. Northwest Atl. Fish. Sci. 2, 47–52 (1981).

    Article 

    Google Scholar 

  • World Register of Marine Species (WoRMS, accessed 1 November 2020); https://doi.org/10.14284/170

  • Nakamura, Y. Growth and grazing of a large heterotrophic dinoflagellate, Noctiluca scintillans, in laboratory cultures. J. Plankton Res. 20, 1711–1720 (1998).

    Article 

    Google Scholar 

  • Boulding, E. G. & Platt, T. Variation in photosynthetic rates among individual cells of a marine dinoflagellate. Mar. Ecol. Prog. Ser. 29, 199–203 (1986).

    CAS 
    Article 

    Google Scholar 

  • Rimet, F. et al. The Observatory on LAkes (OLA) database: sixty years of environmental data accessible to the public. J. Limnol. https://doi.org/10.4081/jlimnol.2020.1944 (2020).

  • Rudstam, L. Zooplankton Survey of Oneida Lake, New York, 1964 to Present (KNB, 2020); https://knb.ecoinformatics.org/view/kgordon.17.99https://knb.ecoinformatics.org/knb/metacat/kgordon.17.67/default

  • Dumont, H. J., Van de Velde, I. & Dumont, S. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19, 75–97 (1975).

    PubMed 
    Article 

    Google Scholar 

  • Geller, W. & Müller, H. Seasonal variability in the relationship between body length and individual dry weight as related to food abundance and clutch size in two coexisting Daphnia species. J. Plankton Res. 7, 1–18 (1985).

    Article 

    Google Scholar 

  • Branstrator, D. K. Contrasting life histories of the predatory cladocerans Leptodora kindtii and Bythotrephes longimanus. J. Plankton Res. 27, 569–585 (2005).

    Article 

    Google Scholar 

  • Rosen, R. A. Length–dry weight relationships of some freshwater zooplankton. J. Freshw. Ecol. 1, 225–229 (1981).

    Article 

    Google Scholar 

  • Peters, R. H. & Downing, J. A. Empirical analysis of zooplankton filtering and feeding rates. Limnol. Oceanogr. 29, 763–784 (1984).

    Article 

    Google Scholar 

  • Eckmann, J. P., Kamphorst, S. O. & Ruelle, D. Recurrence plots of dynamical systems. Europhys. Lett. 4, 973–977 (1987).

    Article 

    Google Scholar 

  • Luque, B., Lacasa, L., Ballesteros, F. J. & Robledo, A. Analytical properties of horizontal visibility graphs in the Feigenbaum scenario. Chaos 22, 013109 (2012).

    PubMed 
    Article 

    Google Scholar 

  • McCaffrey, D. F., Ellner, S., Gallant, A. R. & Nychka, D. W. Estimating the Lyapunov exponent of a chaotic system with nonparametric regression. J. Am. Stat. Assoc. 87, 682–695 (1992).

    Article 

    Google Scholar 

  • Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article 

    Google Scholar 

  • Ricker, W. E. Stock and recruitment. J. Fish. Board Can. 11, 559–623 (1954).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Mucin induces CRISPR-Cas defense in an opportunistic pathogen

    Making hydrogen power a reality