Anderson, P. K. et al. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19, 535–544 (2004).
Google Scholar
Brasier, C. M. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol. 57, 792–808 (2008).
Waage, J. K. & Mumford, J. D. Agricultural biosecurity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 863–876 (2008).
Google Scholar
IPPC. Surveillance guide—A guide to understand the principal requirements of surveillance programmes for national plant protection organizations. Second edition. http://www.fao.org/documents/card/en/c/cb7139en (2021) https://doi.org/10.4060/cb7139en.
Parnell, S., van den Bosch, F., Gottwald, T. & Gilligan, C. A. Surveillance to inform control of emerging plant diseases: An epidemiological perspective. Annu. Rev. Phytopathol. 55, 591–610 (2017).
Google Scholar
Cunniffe, N. J., Cobb, R. C., Meentemeyer, R. K., Rizzo, D. M. & Gilligan, C. A. Modeling when, where, and how to manage a forest epidemic, motivated by sudden oak death in California. Proc. Natl. Acad. Sci. 113, 5640–5645 (2016).
Google Scholar
Gottwald, T. R., Dixon, W., Parnell, S. & Riley, T. Huanglongbing: The dragon arrives in the USA. In Huanglongbing-Greening International Workshop, July 14–21 13–14 (2006).
Herms, D. A., Stone, A. K. & Chatfield, J. A. Emerald ash borer: The beginning of the end of ash in North America?. Ornam. Plants Annu. Rep. Res. Rev. 2003, 62–71 (2004).
Sansford, C. E. Pest Risk Analysis for Hymenoscyphus pseudoalbidus (anamorph Chalara fraxinea) for the UK and the Republic of Ireland. https://webarchive.nationalarchives.gov.uk/ukgwa/20140904094312mp_/http://www.fera.defra.gov.uk/plants/plantHealth/pestsDiseases/documents/hymenoscyphusPseudoalbidusPRA.pdf (2013).
Alonso Chavez, V., Parnell, S. & van den Bosch, F. Monitoring invasive pathogens in plant nurseries for early-detection and to minimise the probability of escape. J. Theor. Biol. 407, 290–302 (2016).
Google Scholar
Bourhis, Y., Gottwald, T. R., Lopez-Ruiz, F. J., Patarapuwadol, S. & van den Bosch, F. Sampling for disease absence-deriving informed monitoring from epidemic traits. J. Theor. Biol. 461, 8–16 (2019).
Google Scholar
Mastin, A. J., van den Bosch, F., van den Berg, F. & Parnell, S. Quantifying the hidden costs of imperfect detection for early detection surveillance. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180261 (2019).
Mastin, A. J., van den Bosch, F., Gottwald, T. R., Alonso Chavez, V. & Parnell, S. R. A method of determining where to target surveillance efforts in heterogeneous epidemiological systems. PLoS Comput. Biol. 13, e1005712 (2017).
Google Scholar
Parnell, S., Gottwald, T. R., Gilks, W. R. & van den Bosch, F. Estimating the incidence of an epidemic when it is first discovered and the design of early detection monitoring. J. Theor. Biol. 305, 30–36 (2012).
Google Scholar
Parnell, S., Gottwald, T. R., Cunniffe, N. J., Alonso Chavez, V. & van den Bosch, F. Early detection surveillance for an emerging plant pathogen: A rule of thumb to predict prevalence at first discovery. Proc. R. Soc. B Biol. Sci. 282, 20151478 (2015).
Silva, G. et al. Plant pest surveillance: From satellites to molecules. Emerg. Top. Life Sci. 5, 275–287 (2021).
Google Scholar
Mastin, A. J., Gottwald, T. R., van den Bosch, F., Cunniffe, N. J. & Parnell, S. Optimising risk-based surveillance for early detection of invasive plant pathogens. PLoS Biol. 18, e3000863 (2020).
Google Scholar
Martelli, G. P., Boscia, D., Porcelli, F. & Saponari, M. The olive quick decline syndrome in south-east Italy: A threatening phytosanitary emergency. Eur. J. Plant Pathol. 144, 235–243 (2015).
Saponari, M., Boscia, D., Nigro, F. & Martelli, G. P. Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (southern Italy). J. Plant Pathol. 95, 668 (2013).
Ben Moussa, I. E. et al. Seasonal fluctuations of sap-feeding insect species infected by Xylella fastidiosa in Apulian olive groves of southern Italy. J. Econ. Entomol. 109, 1512–1518 (2016).
Google Scholar
Cornara, D. et al. Transmission of Xylella fastidiosa to grapevine by the meadow spittlebug. Phytopathology 106, 1285–1290 (2016).
Google Scholar
Cornara, D. et al. Transmission of Xylella fastidiosa by naturally infected Philaenus spumarius (Hemiptera, Aphrophoridae) to different host plants. J. Appl. Entomol. 141, 80–87 (2017).
Saponari, M. et al. Infectivity and transmission of Xylella fastidiosa by Philaenus spumarius (Hemiptera: Aphrophoridae) in Apulia, Italy. J. Econ. Entomol. 107, 1316–1319 (2014).
Google Scholar
European Commission. Commission Implementing Regulation (EU) 2020/1201 of 14 August 2020 as regards measures to prevent the introduction into and the spread within the Union of Xylella fastidiosa (Wells et al.). (2021).
EFSA et al. Guidelines for statistically sound and risk-based surveys of Xylella fastidiosa. EFSA. Support. Publ. 17, 1873 (2020).
EFSA et al. General guidelines for statistically sound and risk-based surveys of plant pests. EFSA Support. Publ. 17, 1919E (2020).
Bourhis, Y., Gottwald, T. & van den Bosch, F. Translating surveillance data into incidence estimates. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180262 (2019).
Google Scholar
Cornara, D. et al. Spittlebugs as vectors of Xylella fastidiosa in olive orchards in Italy. J. Pest Sci. 90, 521–530 (2017).
Cornara, D., Bosco, D. & Fereres, A. Philaenus spumarius: when an old acquaintance becomes a new threat to European agriculture. J. Pest Sci. 91, 957–972 (2018).
Almeida, R. P. P., Blua, M. J., Lopes, J. R. S. & Purcell, A. H. Vector transmission of Xylella fastidiosa: Applying fundamental knowledge to generate disease management strategies. Ann. Entomol. Soc. Am. 98, 775–786 (2005).
Purcell, A. H. & Finlay, A. H. Evidence for noncirculative transmission of Pierce’s disease bacterium by sharpshooter leafhoppers. Phytopathology 69, 393–395 (1979).
Hill, B. & Purcell, A. H. Acquisition and retention of Xylella fastidiosa by an efficient vector, Graphocephala atropunctata. Phytopathology 85, 209 (1995).
Hill, B. L. & Purcell, A. H. Multiplication and movement of Xylella fastidiosa within grapevine and four other plants. Phytopathology 85, 1368 (1995).
Huang, Q., Bentz, J. & Sherald, J. L. Fast, easy and efficient DNA extraction and one-step polymerase chain reaction for the detection of Xylella fastidiosa in potential insect vectors. J. Plant Pathol. 88, 77–81 (2006).
Google Scholar
Harper, S. J., Ward, L. I. & Clover, G. R. G. Development of LAMP and real-time PCR methods for the rapid detection of Xylella fastidiosa for quarantine and field applications. Phytopathology 100, 1282–1288 (2010).
Google Scholar
EFSA et al. Pest survey card on Xylella fastidiosa. EFSA Support. Publ. 16, (2019).
Fierro, A., Liccardo, A. & Porcelli, F. A lattice model to manage the vector and the infection of the Xylella fastidiosa on olive trees. Sci. Rep. 9, 8723 (2019).
Google Scholar
EPPO. PM 7/24 (4) Xylella fastidiosa. EPPO Bull. 49, 175–227 (2019).
Landa, B. B. et al. Emergence of a plant pathogen in Europe associated with multiple intercontinental introductions. Appl. Environ. Microbiol. 86, 1–15 (2019).
Castro, C., DiSalvo, B. & Roper, M. C. Xylella fastidiosa: A reemerging plant pathogen that threatens crops globally. PLoS Pathog. 17, e1009813 (2021).
Google Scholar
Saponari, M., Giampetruzzi, A., Loconsole, G., Boscia, D. & Saldarelli, P. Xylella fastidiosa in olive in Apulia: Where we stand. Phytopathology 109, 175–186 (2019).
Google Scholar
Zarco-Tejada, P. J. et al. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nat. Plants 4, 432–439 (2018).
Google Scholar
Gottwald, T. et al. Canine olfactory detection of a vectored phytobacterial pathogen, Liberibacter asiaticus, and integration with disease control. Proc. Natl. Acad. Sci. 117, 3492–3501 (2020).
Google Scholar
Mendel, J., Furton, K. G. & Mills, D. An Evaluation of scent-discriminating canines for rapid response to agricultural diseases. HortTechnology 28, 102–108 (2018).
ECDC. Guidelines for the Surveillance of Invasive Mosquitoes in Europe. (2012).
Kading, R. C., Golnar, A. J., Hamer, S. A. & Hamer, G. L. Advanced surveillance and preparedness to meet a new era of invasive vectors and emerging vector-borne diseases. PLoS Negl. Trop. Dis. 12, e0006761 (2018).
Google Scholar
Kumagai, L. B. et al. First report of Candidatus Liberibacter asiaticus associated with citrus huanglongbing in California. Plant Dis. 97, 283 (2013).
Google Scholar
Ben Moussa, I. E. et al. Evaluation of “Spy Insect” approach for monitoring Xylella fastidiosa in symptomless olive orchards in the Salento peninsula (Southern Italy). IOBC WPRS Bull. 121, 77–84 (2017).
Cruaud, A. et al. Using insects to detect, monitor and predict the distribution of Xylella fastidiosa: A case study in Corsica. Sci. Rep. 8, 15628 (2018).
Google Scholar
Yaseen, T. et al. On-site detection of Xylella fastidiosa in host plants and in “spy insects” using the real-time loop-mediated isothermal amplification method. Phytopathol. Mediterr. https://doi.org/10.14601/Phytopathol_Mediterr-15250 (2015).
Google Scholar
López-Mercadal, J. et al. Collection of data and information in Balearic Islands on biology of vectors and potential vectors of Xylella fastidiosa (GP/EFSA/ALPHA/017/01). EFSA Support. Publ. 18, 6925E (2021).
Cunty, A. Detection, identification and surveillance of Xylella fastidiosa on vectors in France https://zenodo.org/record/3551122#.XjGqBs77SUl. (2019) https://doi.org/10.5281/zenodo.3551122.
Kottelenberg, D., Hemerik, L., Saponari, M. & van der Werf, W. Shape and rate of movement of the invasion front of Xylella fastidiosa spp. pauca in Puglia. Sci. Rep. 11, 1061 (2021).
Google Scholar
Source: Ecology - nature.com