Kim, S. Y. & Yi, D. Y. Components of human breast milk: From macronutrient to microbiome and microRNA. Clin. Exp. Pediatr. 63(8), 301 (2020).
Google Scholar
Power, M. L. & Schulkin, J. Maternal regulation of offspring development in mammals is an ancient adaptation tied to lactation. Appl. Transl. Genomics. 2, 55–63 (2013).
Google Scholar
Pannaraj, P. S. et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr. 171(7), 647–654 (2017).
Google Scholar
Lyons, K. E., Ryan, C. A., Dempsey, E. M., Ross, R. P. & Stanton, C. Breast milk, a source of beneficial microbes and associated benefits for infant health. Nutrients 12(4), 1039 (2020).
Google Scholar
Fehr, K. et al. Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: The CHILD cohort study. Cell Host Microbe. 28(2), 285–297 (2020).
Google Scholar
Moossavi, S. & Azad, M. B. Origins of human milk microbiota: New evidence and arising questions. Gut Microbes. 12(1), 1667722. https://doi.org/10.1080/19490976.2019.1667722 (2020).
Google Scholar
Groer, M. W., Morgan, K. H., Louis-Jacques, A. & Miller, E. M. A scoping review of research on the human milk microbiome. J. Hum. Lact. 36(4), 628–643 (2020).
Google Scholar
Gopalakrishna, K. P. & Hand, T. W. Influence of maternal milk on the neonatal intestinal microbiome. Nutrients 12(3), 823 (2020).
Google Scholar
Ayoub Moubareck, C., Lootah, M., Tahlak, M. & Venema, K. Profiles of human milk oligosaccharides and their relations to the milk microbiota of breastfeeding mothers in Dubai. Nutrients 12(6), 1727 (2020).
Google Scholar
Henrick, B. M. et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 184, 3884–3898 (2021).
Google Scholar
Walker, W. A. & Iyengar, R. S. Breast milk, microbiota, and intestinal immune homeostasis. Pediatr. Res. 77(1), 220–228 (2015).
Google Scholar
Petrullo, L. et al. The early life microbiota mediates maternal effects on offspring growth in a nonhuman primate. Iscience. 25(3), 103948 (2022).
Google Scholar
Bowen, W. D., Boness, D. J. & Oftedal, O. T. Mass transfer from mother to pup and subsequent mass loss by the weaned pup in the hooded seal, Cystophora cristata. Can. J. Zool. 65(1), 1–8 (1987).
Google Scholar
Smith, T. M., Austin, C., Hinde, K., Vogel, E. R. & Arora, M. Cyclical nursing patterns in wild orangutans. Sci. Adv. 3(5), e1601517 (2017).
Google Scholar
Park, Y. W. & Haenlein, G. F. W. Handbook of Milk of Non-Bovine Mammals (Wiley, 2008).
Oftedal, O. T. Use of maternal reserves as a lactation strategy in large mammals. Proc. Nutr. Soc. 59(1), 99–106 (2000).
Google Scholar
Hinde, K. & Milligan, L. A. Primate milk: Proximate mechanisms and ultimate perspectives. Evol. Anthropol. Issues News Rev. 20(1), 9–23 (2011).
Google Scholar
Osthoff, G., Hugo, A., De Wit, M., Nguyen, T. P. M. & Seier, J. Milk composition of captive vervet monkey (Chlorocebus pygerythrus) and rhesus macaque (Macaca mulatta) with observations on gorilla (Gorilla gorilla gorilla) and white handed gibbon (Hylobates lar). Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 152(4), 332–338 (2009).
Google Scholar
Power, M. L., Oftedal, O. T. & Tardif, S. D. Does the milk of callitrichid monkeys differ from that of larger anthropoids?. Am. J. Primatol. Off. J. Am. Soc. Primatol. 56(2), 117–127 (2002).
Power, M. L. et al. Patterns of milk macronutrients and bioactive molecules across lactation in a western lowland gorilla (Gorilla gorilla) and a Sumatran orangutan (Pongo abelii). Am. J. Primatol. 79(3), e22609 (2017).
Google Scholar
Garcia, M., Power, M. L. & Moyes, K. M. Immunoglobulin A and nutrients in milk from great apes throughout lactation. Am. J. Primatol. 79(3), e22614 (2017).
Google Scholar
Muletz-Wolz, C. R. et al. Diversity and temporal dynamics of primate milk microbiomes. Am. J. Primatol. 81(10–11), e22994 (2019).
Google Scholar
Rodríguez, J. M. The origin of human milk bacteria: Is there a bacterial entero-mammary pathway during late pregnancy and lactation?. Adv. Nutr. 5(6), 779–784 (2014).
Google Scholar
LaTuga MS, Stuebe A, Seed PC. A review of the source and function of microbiota in breast milk. In Seminars in Reproductive Medicine, Vol 32, 68–73 (Thieme Medical Publishers, 2014).
Chen, W. et al. Lactation stage-dependency of the sow milk microbiota. Front. Microbiol. 9, 945 (2018).
Google Scholar
McInnis, E. A., Kalanetra, K. M., Mills, D. A. & Maga, E. A. Analysis of raw goat milk microbiota: Impact of stage of lactation and lysozyme on microbial diversity. Food Microbiol. 46, 121–131 (2015).
Google Scholar
Gonzalez, E. et al. Distinct changes occur in the human breast milk microbiome between early and established lactation in breastfeeding Guatemalan mothers. Front. Microbiol. 12, 194 (2021).
Google Scholar
Ge, Y. et al. The maternal milk microbiome in mammals of different types and its potential role in the neonatal gut microbiota composition. Animals 11(12), 3349 (2021).
Google Scholar
Kordy, K. et al. Contributions to human breast milk microbiome and enteromammary transfer of Bifidobacterium breve. PLoS ONE 15(1), e0219633 (2020).
Google Scholar
Jost, T., Lacroix, C., Braegger, C. & Chassard, C. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health. Nutr. Rev. 73(7), 426–437 (2015).
Google Scholar
Fernández, L. et al. The human milk microbiota: Origin and potential roles in health and disease. Pharmacol. Res. 69(1), 1–10 (2013).
Google Scholar
Cabrera-Rubio, R. et al. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. 96(3), 544–551 (2012).
Google Scholar
Gomez-Gallego, C., Garcia-Mantrana, I., Salminen, S. & Collado, M. C. The human milk microbiome and factors influencing its composition and activity. In Seminars in Fetal and Neonatal Medicine. Vol 21, 400–405 (Elsevier, 2016).
Khodayar-Pardo, P., Mira-Pascual, L., Collado, M. C. & Martínez-Costa, C. Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota. J. Perinatol. 34(8), 599–605 (2014).
Google Scholar
Wan, Y. et al. Human milk microbiota development during lactation and its relation to maternal geographic location and gestational hypertensive status. Gut Microbes. 11(5), 1438–1449 (2020).
Google Scholar
Hunt, K. M. et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE 6(6), e21313 (2011).
Google Scholar
Petrullo, L., Jorgensen, M. J., Snyder-Mackler, N. & Lu, A. Composition and stability of the vervet monkey milk microbiome. Am. J. Primatol. 81(10–11), e22982 (2019).
Google Scholar
Mittermeier, R. A. et al. Primates in peril: The world’s 25 most endangered primates 2008–2010. Primate Conserv. 24(1), 1–57 (2009).
Google Scholar
Williams, J. E. et al. Human milk microbial community structure is relatively stable and related to variations in macronutrient and micronutrient intakes in healthy lactating women. J. Nutr. 147(9), 1739–1748 (2017).
Google Scholar
Kumar, H. et al. Distinct patterns in human milk microbiota and fatty acid profiles across specific geographic locations. Front. Microbiol. 7, 1619 (2016).
Google Scholar
Keady, M. et al. Clinical health issues, reproductive hormones, and metabolic hormones associated with gut microbiome structure in African and Asian elephants. Anim. Microbiome. 3, 1–19 (2021).
Google Scholar
RStudio Team. RStudio: Integrated Development for R. http://www.rstudio.com/ (2020).
Bolyen, E. et al. QIIME 2: Reproducible, Interactive, Scalable, and Extensible Microbiome Data Science. PeerJ Preprints (2018).
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 13(7), 581 (2016).
Google Scholar
Cole, J. R. et al. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42(D1), D633–D642 (2014).
Google Scholar
Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 6(1), 1–14 (2018).
Google Scholar
McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4), e61217 (2013).
Google Scholar
Beule, L. & Karlovsky, P. Improved normalization of species count data in ecology by scaling with ranked subsampling (SRS): Application to microbial communities. PeerJ 8, e9593 (2020).
Google Scholar
Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224 (2017).
Google Scholar
Oksanen, J. et al. vegan: Community Ecology Package. https://cran.r-project.org/package=vegan (2020).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
Google Scholar
Kumbhare, S. V., Patangia, D. V., Patil, R. H., Shouche, Y. S. & Patil, N. P. Factors influencing the gut microbiome in children: From infancy to childhood. J. Biosci. 44(2), 1–19 (2019).
Google Scholar
Amato, K. R. et al. Phylogenetic and ecological factors impact the gut microbiota of two Neotropical primate species. Oecologia 180(3), 717–733 (2016).
Google Scholar
Mulligan, M. E. et al. Methicillin-resistant Staphylococcus aureus: A consensus review of the microbiology, pathogenesis, and epidemiology with implications for prevention and management. Am. J. Med. 94(3), 313–328 (1993).
Google Scholar
Ruegg, P. L. A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 100(12), 10381–10397 (2017).
Google Scholar
Clarridge, J. E. III. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 17(4), 840–862 (2004).
Google Scholar
Martín, V., Mediano, P., Del Campo, R., Rodríguez, J. M. & Marín, M. Streptococcal diversity of human milk and comparison of different methods for the taxonomic identification of streptococci. J. Hum. Lact. 32(4), NP84–NP94 (2016).
Google Scholar
Ghebremedhin, B., Layer, F., Konig, W. & Konig, B. Genetic classification and distinguishing of Staphylococcus species based on different partial gap, 16S rRNA, hsp60, rpoB, sodA, and tuf gene sequences. J. Clin. Microbiol. 46(3), 1019–1025 (2008).
Google Scholar
Chen, Q. et al. Quantification of human oral and fecal Streptococcus parasanguinis by use of quantitative real-time PCR targeting the groEL gene. Front. Microbiol. 10, 2910 (2019).
Google Scholar
Plows, J. F. et al. Longitudinal changes in human milk oligosaccharides (HMOs) over the course of 24 months of lactation. J. Nutr. 151(4), 876–882 (2021).
Google Scholar
Boehm, G. & Stahl, B. Oligosaccharides from milk. J. Nutr. 137(3), 847S-849S (2007).
Google Scholar
van Leeuwen, S. S. et al. Goat milk oligosaccharides: Their diversity, quantity, and functional properties in comparison to human milk oligosaccharides. J. Agric. Food Chem. 68(47), 13469–13485 (2020).
Google Scholar
Tao, N. et al. Evolutionary glycomics: Characterization of milk oligosaccharides in primates. J. Proteome Res. 10(4), 1548–1557 (2011).
Google Scholar
Yu, Z.-T., Chen, C. & Newburg, D. S. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology 23(11), 1281–1292 (2013).
Google Scholar
Bolotin, A. et al. Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat. Biotechnol. 22(12), 1554–1558 (2004).
Google Scholar
Schwab, C. & Gänzle, M. Lactic acid bacteria fermentation of human milk oligosaccharide components, human milk oligosaccharides and galactooligosaccharides. FEMS Microbiol. Lett. 315(2), 141–148 (2011).
Google Scholar
Marcobal, A. et al. Consumption of human milk oligosaccharides by gut-related microbes. J. Agric. Food Chem. 58(9), 5334–5340 (2010).
Google Scholar
Uriot, O. et al. Streptococcus thermophilus: From yogurt starter to a new promising probiotic candidate?. J. Funct. Foods. 37, 74–89 (2017).
Google Scholar
Duar, R. M., Henrick, B. M., Casaburi, G. & Frese, S. A. Integrating the ecosystem services framework to define dysbiosis of the breastfed infant gut: The role of B. infantis and human milk oligosaccharides. Front. Nutr. 7, 33 (2020).
Google Scholar
Singh, R. P., Niharika, J., Kondepudi, K. K., Bishnoi, M. & Tingirikari, J. M. R. Recent understanding of human milk oligosaccharides in establishing infant gut microbiome and roles in immune system. Food Res. Int. 151, 110884. https://doi.org/10.1016/j.foodres.2021.110884 (2022).
Google Scholar
Ximenez, C. & Torres, J. Development of microbiota in infants and its role in maturation of gut mucosa and immune system. Arch. Med. Res. 48(8), 666–680. https://doi.org/10.1016/j.arcmed.2017.11.007 (2017).
Google Scholar
Meehan, C. L. et al. Social networks, cooperative breeding, and the human milk microbiome. Am. J. Hum. Biol. 30(4), e23131 (2018).
Google Scholar
Bornbusch, S. L. et al. Stable and transient structural variation in lemur vaginal, labial and axillary microbiomes: Patterns by species, body site, ovarian hormones and forest access. FEMS Microbiol. Ecol. 96(6), fiaa090 (2020).
Google Scholar
Bornbusch, S. L. & Drea, C. M. Antibiotic resistance genes in lemur gut and soil microbiota along a gradient of anthropogenic disturbance. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2021.704070 (2021).
Google Scholar
Grieneisen, L. E. et al. Genes, geology and germs: Gut microbiota across a primate hybrid zone are explained by site soil properties, not host species. Proc. R. Soc. B. 2019(286), 20190431 (1901).
Ellison, S. et al. The influence of habitat and phylogeny on the skin microbiome of amphibians in Guatemala and Mexico. Microb. Ecol. 78(1), 257–267 (2019).
Google Scholar
Phillips, C. D. et al. Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography. Mol. Ecol. 21(11), 2617–2627 (2012).
Google Scholar
Source: Ecology - nature.com