in

Intracellular nitrate storage by diatoms can be an important nitrogen pool in freshwater and marine ecosystems

  • Thamdrup, B. New Pathways and processes in the global nitrogen cycle. Annu. Rev. Ecol. Evol. Syst. 43, 407–428 (2012).

    Google Scholar 

  • Lam, P. et al. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc. Natl. Acad. Sci. USA 106, 4752–4757 (2009).

    CAS 

    Google Scholar 

  • Behrendt, A., de Beer, D. & Stief, P. Vertical activity distribution of dissimilatory nitrate reduction in coastal marine sediments. Biogeosciences 10, 7509–7523 (2013).

    Google Scholar 

  • Fossing, H. et al. Concentration and transport of nitrate by the mat-forming sulphur bacterium. Thioploca. Nature 374, 713–715 (1995).

    CAS 

    Google Scholar 

  • McHatton, S. C., Barry, J. P., Jannasch, H. W. & Nelson, D. C. High nitrate concentrations in vacuolate, autotrophic marine Beggiatoa spp. Appl. Environ. Microbiol. 62, 954–958 (1996).

    CAS 

    Google Scholar 

  • Kamp, A., Høgslund, S., Risgaard-Petersen, N. & Stief, P. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes. Front. Microbiol. 6, 1492 (2015).

    Google Scholar 

  • Eppley, R. W. & Rogers, J. N. Inorganic nitrogen assimilation of Ditylum brightwellii, a marine plankton diatom. J. Phycol. 6, 344–351 (1970).

    CAS 

    Google Scholar 

  • Lomas, M. & Glibert, P. Comparisons of nitrate uptake, storage, and reduction in marine diatoms and flagellates. J. Phycol. 36, 903–913 (2000).

    CAS 

    Google Scholar 

  • Jørgensen, B. B. & Gallardo, A. Thioploca spp.: filamentous sulfur bacteria with nitrate vacuoles. FEMS Microbiol. Ecol. 28, 301–313 (1999).

    Google Scholar 

  • Schulz, H. N. et al. Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284, 493–495 (1999).

    CAS 

    Google Scholar 

  • Risgaard-Petersen, N. et al. Evidence for complete denitrification in a benthic foraminifer. Nature 443, 93–96 (2006).

    CAS 

    Google Scholar 

  • Kamp, A., de Beer, D., Nitsch, J. L., Lavik, G. & Stief, P. Diatoms respire nitrate to survive dark and anoxic conditions. Proc. Natl. Acad. Sci. USA 108, 5649–5654 (2011).

    CAS 

    Google Scholar 

  • Stief, P. et al. Dissimilatory nitrate reduction by Aspergillus terreus isolated from the seasonal oxygen minimum zone in the Arabian Sea. BMC Microbiol. 14, 35 (2014).

    Google Scholar 

  • Høgslund, S., Cedhagen, T., Bowser, S. S. & Risgaard-Petersen, N. Sinks and sources of intracellular nitrate in gromiids. Front. Microbiol. 8, 617 (2017).

    Google Scholar 

  • Harold, F. M. The Vital Force: A Study of Bioenergetics (WH Freeman & Co., 1986).

  • Katz, M. E., Finkel, Z. V., Grzebyk, D., Knoll, A. H. & Falkowski, P. G. Evolutionary trajectories and biogeochemical impacts of marine eukaryotic phytoplankton. Annu. Rev. Ecol. Evol. Syst. 35, 523–556 (2004).

    Google Scholar 

  • Villareal, T. A., Altabet, M. A. & Culverrymsza, K. Nitrogen transport by vertically migrating diatom mats in the North Pacific Ocean. Nature 363, 709–712 (1993).

    CAS 

    Google Scholar 

  • Kamp, A., Stief, P. & Schulz, H. N. Anaerobic sulfide oxidation with nitrate by a freshwater Beggiatoa enrichment culture. Appl. Environ. Microbiol. 72, 4755–4760 (2006).

    CAS 

    Google Scholar 

  • Merz, E. et al. Nitrate respiration and diel migration patterns of diatoms are linked in sediments underneath a microbial mat. Environ. Microbiol. 23, 1422–1435 (2021).

    CAS 

    Google Scholar 

  • Leblanc, K. et al. A global diatom database–abundance, biovolume and biomass in the world ocean. Earth Syst. Sci. Data 4, 149–165 (2012).

    Google Scholar 

  • Benoiston, A. S. et al. The evolution of diatoms and their biogeochemical functions. Phil. Trans. R. Soc. B 372, 20160397 (2017).

    Google Scholar 

  • Nelson, D. M., Tréguer, P., Brzezinski, M. A., Leynaert, A. & Queguiner, B. Production and dissolution of biogenic silica in the ocean-revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem. Cycl. 9, 359–372 (1995).

    CAS 

    Google Scholar 

  • Sarthou, G., Timmermans, K. R., Blain, S. & Tréguer, P. Growth physiology and fate of diatoms in the ocean: a review. J. Sea Res. 53, 25–42 (2005).

    CAS 

    Google Scholar 

  • Dortch, Q., Clayton, J. R., Thoresen, S. S. & Ahmed, S. I. Species differences in accumulation of nitrogen pools in phytoplankton. Mar. Biol. 81, 237–250 (1984).

    CAS 

    Google Scholar 

  • Kamp, A., Stief, P., Knappe, J. & de Beer, D. Response of the ubiquitous pelagic diatom Thalassiosira weissflogii to darkness and anoxia. PLoS ONE 8, e82605 (2013).

    Google Scholar 

  • Kamp, A., Stief, P., Bristow, L. A., Thamdrup, B. & Glud, R. N. Intracellular nitrate of marine diatoms as a driver of anaerobic nitrogen cycling in sinking aggregates. Front. Microbiol. 7, 1669 (2016).

    Google Scholar 

  • Needoba, J. A. & Harrison, P. J. Influence of low light and a light:dark cycle on NO3 uptake, intracellular NO3, and nitrogen isotope fractionation by marine phytoplankton. J. Phycol. 40, 505–516 (2004).

    CAS 

    Google Scholar 

  • Lomas, M. W. & Glibert, P. M. Temperature regulation of nitrate uptake: A novel hypothesis about nitrate uptake and reduction in cool-water diatoms. Limnol. Oceanogr. 44, 556–572 (1999).

    CAS 

    Google Scholar 

  • Lomas, M. W., Rumbley, C. J. & Glibert, P. M. Ammonium release by nitrogen sufficient diatoms in response to rapid increases in irradiance. J. Plankton Res. 22, 2351–2366 (2000).

    CAS 

    Google Scholar 

  • Van Tol, H. M. & Armbrust, E. V. Genome-scale metabolic model of the diatom Thalassiosira pseudonana highlights the importance of nitrogen and sulfur metabolism in redox balance. PLoS ONE 16, e0241960 (2021).

    Google Scholar 

  • Piña-Ochoa, E. et al. Widespread occurrence of nitrate storage and denitrification among Foraminifera and Gromiida. Proc. Natl. Acad. Sci. USA 107, 1148–1153 (2010).

    Google Scholar 

  • García-Robledo, E., Corzo, A., Papaspyrou, S., Jimenez-Arias, J. L. & Villahermosa, D. Freeze-lysable inorganic nutrients in intertidal sediments: dependence on microphytobenthos abundance. Mar. Ecol. Prog. Ser. 403, 155–163 (2010).

    Google Scholar 

  • Marchant, H. K., Lavik, G., Holtappels, M. & Kuypers, M. M. M. The fate of nitrate in intertidal permeable sediments. PLoS ONE 9, e104517 (2014).

    Google Scholar 

  • Villareal, T. A. & Lipschultz, F. Internal nitrate concentrations in single cells of large phytoplankton from the Sargasso Sea. J. Phycol. 31, 689–696 (1995).

    CAS 

    Google Scholar 

  • Smith, G. J., Zimmerman, R. C. & Alberte, R. S. Molecular and physiological responses of diatoms to variable levels of irradiance and nitrogen availability: Growth of Skeletonema costatum in simulated upwelling conditions. Limnol. Oceanogr. 37, 989–1007 (1992).

    CAS 

    Google Scholar 

  • Montagnes, D. J. S. & Franklin, D. J. Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: Reconsidering some paradigms. Limnol. Oceanogr. 46, 2008–2018 (2001).

    CAS 

    Google Scholar 

  • Smith, S. R. et al. Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. Nat. Commun. 10, 4552 (2019).

    Google Scholar 

  • Behrenfeld, M. J. et al. Thoughts on the evolution and ecological niche of diatoms. Ecol. Monogr. 91, e01457 (2021).

    Google Scholar 

  • Bourke, M. F. et al. Metabolism in anoxic permeable sediments is dominated by eukaryotic dark fermentation. Nat. Geosci. 10, 30–35 (2017).

    CAS 

    Google Scholar 

  • Härnström, K., Ellegaard, M., Andersen, T. J. & Godhe, A. Hundred years of genetic structure in a sediment revived diatom population. Proc. Natl. Acad. Sci. USA 108, 4252–4257 (2011).

    Google Scholar 

  • Pelusi, A., Santelia, M. E., Benvenuto, G., Godhe, A. & Montresor, M. The diatom Chaetoceros socialis: spore formation and preservation. Europ. J. Phycol. 55, 1–10 (2020).

    CAS 

    Google Scholar 

  • Petterson, K. & Sahlsten, E. Diel patterns of combined nitrogen uptake and intracellular storage of nitrate by phytoplankton in the open Skagerrak. J. Exp. Mar. Biol. Ecol. 138, 167–182 (1990).

    Google Scholar 

  • Petterson, K. Seasonal uptake of carbon and nitrogen and intracellular storage of nitrate in planktonic organisms in the Skagerrak. J. Exp. Mar. Biol. Ecol. 151, 121–1137 (1991).

    Google Scholar 

  • Bode, A., Botas, J. A. & Fernandez, E. Nitrate storage by phytoplankton in a coastal upwelling environment. Mar. Biol. 129, 399–406 (1997).

    CAS 

    Google Scholar 

  • Stief, P., Kamp, A., Thamdrup, B. & Glud, R. N. Anaerobic nitrogen turnover by sinking diatom aggregates at varying ambient oxygen levels. Front. Microbiol. 7, 98 (2016).

    Google Scholar 

  • Jensen, M. M. et al. Intensive nitrogen loss over the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium. ISME J. 5, 1660–1670 (2011).

    CAS 

    Google Scholar 

  • Magalhaes, C. M., Wiebe, W. J., Joye, S. B. & Bordalo, A. A. Inorganic nitrogen dynamics in intertidal rocky biofilms and sediments of the Douro River estuary (Portugal). Estuaries 28, 592–607 (2005).

    CAS 

    Google Scholar 

  • Burgin, A. J. & Hamilton, S. K. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front. Ecol. Environ. 5, 89–96 (2007).

    Google Scholar 

  • Kühl, M., Glud, R. N., Ploug, H. & Ramsing, N. B. Microenvironmental control of photosynthesis and photosynthesis-coupled respiration in an epilithic cyanobacterial biofilm. J. Phycol. 32, 799–812 (1996).

    Google Scholar 

  • Heisterkamp, I. M. et al. Shell biofilm-associated nitrous oxide production in marine molluscs: processes, precursors and relative importance. Environ. Microbiol. 15, 1943–1955 (2013).

    CAS 

    Google Scholar 

  • Fernandez-Mendez, M. et al. Composition, buoyancy regulation and fate of ice algal aggregates in the Central Arctic Ocean. PLoS ONE 9, e107452 (2014).

    Google Scholar 

  • Boetius, A. et al. Export of algal biomass from the melting Arctic sea ice. Science 339, 1430–1432 (2013).

    CAS 

    Google Scholar 

  • Abed, R. M. M. & Garcia-Pichel, F. Long-term compositional changes after transplant in a microbial mat cyanobacterial community revealed using a polyphasic approach. Environ. Microbiol. 3, 53–62 (2001).

    CAS 

    Google Scholar 

  • Al-Najjar, M. A. A., de Beer, D., Kühl, M. & Polerecky, L. Light utilization efficiency in photosynthetic microbial mats. Environ. Microbiol. 14, 982–992 (2012).

    CAS 

    Google Scholar 

  • Heisterkamp, I. M., Kamp, A., Schramm, A. T., de Beer, D. & Stief, P. Indirect control of the intracellular nitrate pool of intertidal sediment by the polychaete Hediste diversicolor. Mar. Ecol. Prog. Ser. 445, 181–192 (2012).

    Google Scholar 

  • García-Robledo, E., Corzo, A. & Papaspyrou, S. A fast and direct spectrophotometric method for the sequential determination of nitrate and nitrite at low concentrations in small volumes. Mar. Chem. 162, 30–36 (2014).

    Google Scholar 

  • Grasshoff, K. In Methods of Seawater Analysis (eds Grasshoff, K., Ehrhardt, M., Kremling, K.) 143–150 (Verlag Chemie Weinheim, 1983).

  • Braman, R. S. & Hendrix, S. A. Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium(III) reduction with chemiluminescence detection. Anal. Chem. 61, 2715–2718 (1989).

    CAS 

    Google Scholar 

  • Meier, D. V. et al. Limitation of microbial processes at saturation-level salinities in a microbial mat covering a coastal salt flat. Appl. Environ. Microbiol. 87, e00698–21 (2021).

    CAS 

    Google Scholar 

  • Sode, K., Horikoshi, K., Takeyama, H., Nakamura, N. & Matsunaga, T. Online monitoring or marine cyanobacterial cultivation based on phycocyanin fluorescence. J. Biotechnol. 21, 209–217 (1991).

    CAS 

    Google Scholar 

  • Berns, D. S., Scott, E. & Oreilly, K. T. C-phycocyanin-minimum molecular weight. Science 145, 1054–1055 (1964).

    CAS 

    Google Scholar 

  • Hillebrand, H., Durselen, C. D., Kirschtel, D., Pollingher, U. & Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424 (1999).

    Google Scholar 

  • Zimmermann, J., Jahn, R. & Gemeinholzer, B. Barcoding diatoms: evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols. Org. Divers. Evol. 11, 173–192 (2011).

    Google Scholar 

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Google Scholar 

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 

    Google Scholar 

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl. Acids Res. 41, D590–D596 (2013).

    CAS 

    Google Scholar 

  • Round, F. E., Crawford, R. M. & Mann, D. G. The Diatoms: Biology and Morphology of the Genera. 747p (Cambridge University Press, 1990).

  • Medlin, L. K. Evolution of the diatoms: major steps in their evolution and a review of the supporting molecular and morphological evidence. Phycologia 55, 79–103 (2016).

    CAS 

    Google Scholar 

  • McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    CAS 

    Google Scholar 

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer Verlag, 2016).

  • Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan (2020).

  • Stief, P. Intracellular Nitrate Storage by Diatoms-Source data. figshare. Dataset. https://doi.org/10.6084/m9.figshare.19790176.v1 (2022).


  • Source: Ecology - nature.com

    Leaf bacterial microbiota response to flooding is controlled by plant phenology in wheat (Triticum aestivum L.)

    Comprehensive climatic suitability evaluation of peanut in Huang-Huai-Hai region under the background of climate change