Godfray, H. C. Parasitoids: Behavioural and Evolutionary Ecology (Princeton University Press, 1994).
Google Scholar
Jervis, M. A., Ellers, J. & Harvey, J. A. Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Annu. Rev. Entomol. 53, 361–385 (2008).
Google Scholar
Jervis, M. A. & Kidd, N. A. C. Host-feeding strategies in hymenopteran parasitoids. Biol. Rev. 61, 395–434 (1986).
Google Scholar
Cebolla, R., Vanaclocha, P., Urbaneja, A. & Tena, A. Overstinging by hymenopteran parasitoids causes mutilation and surplus killing of hosts. J. Pest Sci. 91, 327–339 (2018).
Google Scholar
Abram, P. K., Brodeur, J., Urbaneja, A. & Tena, A. Nonreproductive effects of insect parasitoids on their hosts. Annu. Rev. Entomol. 64, 259–276 (2019).
Google Scholar
Münster-Swendsen, M. Population cycles of the spruce needle miner in Denmark driven by interactions with insect parasitoids. In Population Cycles: The Case for Trophic Interactions (ed. Berryman, A. A.) 29–43 (Oxford University Press, 2002).
Abram, P. K., Brodeur, J., Burte, V. & Boivin, G. Parasitoid-induced host egg abortion: an underappreciated component of biological control services provided by egg parasitoids. Biol. Control 98, 52–60 (2016).
Google Scholar
Vinson, S. B. & Iwantsch, G. F. Host suitability for insect parasitoids. Annu. Rev. Entomol. 25, 397–419 (1980).
Google Scholar
Heimpel, G. E. & Collier, T. R. The evolution of host-feeding behaviour in insect parasitoids. Biol. Rev. 71, 373–400 (1996).
Google Scholar
Heimpel, G. E., Rosenheim, J. A. & Adams, J. M. Behavioral ecology of host feeding in Aphytis melinus parasitoid. Nor. J. Agric. Sci. 6, 101–115 (1994).
Heimpel, G. E. & Rosenheim, J. A. Dynamic host feeding by the parasitoid Aphytis melinus: the balance between current and future reproduction. J. Anim. Ecol. 64, 153–167 (1995).
Google Scholar
Choi, W. I., Yoon, T. J. & Ryoo, M. I. Host-size-dependent feeding behaviour and progeny sex ratio of Anisopteromalus calandrae (Hym., Pteromalidae). J. Appl. Entomol. 125, 71–77 (2001).
Google Scholar
Burger, J. M. S., Hemerik, L., Leteren, J. C. & Vet, L. E. M. Reproduction now or later: optimal host-handling strategies in the whitefly parasitoid Encasia formosa. Oikos 106, 117–130 (2004).
Google Scholar
Guillemaud, T. et al. The tomato borer, Tuta absoluta, invading the Mediterranean Basin, originates from a single introduction from Central Chile. Sci. Rep. 5, 8371 (2015).
Google Scholar
Desneux, N., Luna, M. G., Guillemaud, T. & Urbaneja, A. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J. Pest Sci. 84, 403–408 (2011).
Google Scholar
Desneux, N. et al. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J. Pest Sci. 83, 197–215 (2010).
Google Scholar
Biondi, A., Guedes, R. N. C., Wan, F. H. & Desneux, N. Ecology, worldwide spread and management of the invasive South American tomato pinworm, Tuta absoluta: past, present and future. Annu. Rev. Entomol. 63, 239–258 (2018).
Google Scholar
Campos, M. R., Biondi, A., Adiga, A., Guedes, R. N. C. & Desneux, N. From the Western Palaearctic region to beyond: Tuta absoluta 10 years after invading Europe. J. Pest Sci. 90, 787–796 (2017).
Google Scholar
Han, P. et al. Are we ready for the invasion of Tuta absoluta? Unanswered key questions for elaborating an integrated pest management package in Xinjiang, China. Entomol. Gen. 38, 125 (2018).
Han, P. et al. Tuta absoluta continues to disperse in Asia: damage, ongoing management and future challenges. J. Pest Sci. 92, 1317–1327 (2019).
Google Scholar
Mansour, R. et al. Occurrence, biology, natural enemies and management of Tuta absoluta in Africa. Entomol. Gen. 38, 83–111 (2018).
Google Scholar
Zhang, G. F. et al. Outbreak of the South American tomato leafminer, Tuta absoluta, in the Chinese mainland: geographic and potential host range expansion. Pest Manag. Sci. 77, 5475–5488 (2021).
Google Scholar
Desneux, N. et al. Integrated pest management of Tuta absoluta: practical implementations across different world regions. J. Pest Sci. 95, 17–39 (2022).
Google Scholar
Wang, M. H. et al. Polygyny of Tuta absoluta may affect sex pheromone-based control techniques. Entomol. Gen. 41, 357–367 (2021).
Google Scholar
Rostami, E., Madadi, H., Abbasipour, H., Allahyari, H. & Cuthbertson, A. G. S. Pest density influences on tomato pigment contents: the South American tomato pinworm scenario. Entomol. Gen. 40, 195–205 (2020).
Google Scholar
Desneux, N., Decourtye, A. & Delpuech, J. M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52, 81–106 (2007).
Google Scholar
Gebiola, M., Bernardo, U., Ribes, A. & Gibson, G. A. P. An integrative study of Necremnus Thomson (Hymenoptera: Eulophidae) associated with invasive pests in Europe and North America: taxonomic and ecological implications. Zool. J. Linn. Soc. 173, 352–423 (2015).
Google Scholar
Naselli, M. et al. Insights into food webs associated with the South American tomato pinworm. Pest Manag. Sci. 73, 1352–1357 (2017).
Google Scholar
Campos, M. R. et al. Impact of a shared sugar food source on biological control of Tuta absoluta by the parasitoid Necremnus tutae. J. Pest Sci. 93, 207–218 (2020).
Google Scholar
Zhang, Y. B. et al. Host selection behavior of the host-feeding parasitoid Necremnus tutae on Tuta absoluta. Entomol. Gen. https://doi.org/10.1127/entomologia/2021/1246 (2021).
Google Scholar
Bodino, N., Ferracini, C. & Tavella, L. Is host selection influenced by natal and adult experience in the parasitoid Necremnus tutae (Hymenoptera: Eulophidae)?. Anim. Behav. 112, 221–228 (2016).
Google Scholar
Biondi, A., Desneux, N., Amiens-Desneux, E., Siscaro, G. & Zappalà, L. Biology and developmental strategies of the Palaearctic parasitoid, Bracon nigricans (Hymenoptera: Braconidae) on the Neotropical moth Tuta absoluta (Lepidoptera: Gelechiidae). J. Econ. Entomol. 106, 1638–1647 (2013).
Google Scholar
Foltyn, S. & Gerling, D. The parasitoids of the aleyrodid Bemisia tabaci in Israel. Development, host preference and discrimination of the aphelinid Eretmocerus mundus. Entomol. Exp. Appl. 38, 255–260 (1985).
Google Scholar
Zhang, Y. B., Yang, N. W., Sun, L. Y. & Wan, F. H. Host instar suitability in two invasive whiteflies for the naturally occurring parasitoid Eretmocerus hayati in China. J. Pest Sci. 88(2), 1612–1618 (2015).
Lebreton, S., Darrouzet, E. & Chevrier, C. Could hosts considered as low quality for egg-laying be considered as high quality for host-feeding?. J. Insect Physiol. 55, 694–699 (2009).
Google Scholar
Calvo, F. J., Soriano, J. D., Bolckmans, K. & Belda, J. E. Host instar suitability and life-history parameters under different temperature regimes of Necremnus artynes on Tuta absoluta. Biocontrol Sci. Technol. 23(7), 803–815 (2013).
Google Scholar
Chailleux, A., Desneux, N., Arnó, J. & Gabarra, R. Biology of two key Palaearctic larval ectoparasitoids when parasitizing the invasive pest Tuta absoluta. J. Pest Sci. 87(3), 441–448 (2014).
Google Scholar
Asgari, S. & Rivers, D. B. Venom proteins from endoparasitoid wasps and their role in host-parasite interactions. Annu. Rev. Entomol. 56, 313–335 (2011).
Google Scholar
Abram, P. K., Gariepy, T. D., Boivin, G. & Brodeur, J. An invasive stink bug as an evolutionary trap for an indigenous egg parasitoid. Biol. Invasions 16, 1387–1395 (2014).
Google Scholar
Schlaepfer, M. A., Sherman, P. W., Blossey, B. & Runge, M. C. Introduced species as evolutionary traps. Ecol. Lett. 8, 241–246 (2005).
Google Scholar
van Driesche, R. G., Bellotti, A., Herrera, C. J. & Castello, J. A. Host feeding and ovipositor insertion as sources of mortality in the mealybug Phenacoccus herreni caused by two encyrtids, Epidinocarsis diversicornis and Acerophagus coccois. Entomol. Exp. Appl. 44, 97–100 (1987).
Google Scholar
Barrett, B. & Brunner, J. Types of parasitoid-induced mortality, host stage preferences, and sex ratios exhibited by Pnigalio flavipes (Hymenoptera: Eulophidae) using Phyllonorycter elmaella (Lepidoptera: Gracillaridae) as a host. Environ. Entomol. 19, 803–807 (1990).
Google Scholar
Huang, Y., Loomans, A. J. M., van Lenteren, J. C. & Xu, R. M. Hyperparasitism behavior of the autoparasitoid Encarsia tricolor on two secondary host species. BioControl 54, 411–424 (2009).
Google Scholar
Patel, K. J., Schuster, D. J. & Smerage, G. H. Density dependent parasitism and host-killing of Liriomyza trifolii (Diptera: Agromyzidae) by Diglyphus intermedius (Hymenoptera: Eulophidae). Fla. Entomol. 86, 8–14 (2003).
Google Scholar
Lauziere, I., Perez-Lachaud, G. & Bordeur, J. Influence of host density on the reproductive strategy of Cephalonomia stephanoderis, a parasitoid of the coffee berry borer. Entomol. Exp. Appl. 92, 21–28 (1999).
Google Scholar
Blanckenhorn, W. U. The evolution of body size: what keeps organisms small?. Quart. Rev. Biol. 75(4), 385–407 (2000).
Google Scholar
Idriss, G. E. A., Mohamed, S. A., Khamis, F., Plessis, H. D. & Ekesi, S. Biology and performance of two indigenous larval parasitoids on Tuta absoluta (Lepidoptera: Gelechiidae) in Sudan. Biocontrol Sci. Technol. 28(6), 614–628 (2018).
Google Scholar
Blanckenhorn, W. U., Preziosi, R. F. & Fairbairn, D. J. Time and energy constraints and the evolution of sexual size dimorphism-to eat or to mate?. Evol. Ecol. 9, 369–381 (1995).
Google Scholar
Blomqvist, D., Johansson, O. C., Unger, U., Larsson, M. & Flodin, L. A. Male aerial display and reversed sexual size dimorphism in the dunlin. Anim. Behav. 54, 1291–1299 (1997).
Google Scholar
Simmons, L. W., Tomkins, J. L. & Hunt, J. Sperm competition games played by dimorphic male beetles. Proc. R. Soc. Lond. B 266, 145–150 (1999).
Google Scholar
Madsen, T. & Shine, R. Costs of reproduction influence the evolution of sexual size dimorphism in snakes. Evolution 48, 1389–1397 (1994).
Google Scholar
Blanckenhorn, W. U., Morf, C., Mühlhäuser, C. & Reusch, T. Spatiotemporal variation in selection on body size in the dung fly Sepsis cynipsea. J. Evol. Biol. 9, 369–381 (1999).
Source: Ecology - nature.com