in

Widespread increasing vegetation sensitivity to soil moisture

  • Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Canadell, J. G., et al “[Global Carbon and other Biogeochemical Cycles and Feedbacks”] in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, in Press, 2021).

  • Li, W. et al. Revisiting Global Vegetation Controls Using Multi-Layer Soil Moisture. Geophys. Res. Lett. 48, e2021GL092856 (2021).

    ADS 

    Google Scholar 

  • Stocker, B. D. et al. Quantifying soil moisture impacts on light use efficiency across biomes. N. Phytol. 218, 1430–1449 (2018).

    Article 

    Google Scholar 

  • Greve, P. et al. Global assessment of trends in wetting and drying over land. Nat. Geosci. 7, 716–721 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Jiao, W. et al. Observed increasing water constraint on vegetation growth over the last three decades. Nat. Commun. 12, 3777 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • De Kauwe, M. G., Medlyn, B. E. & Tissue, D. T. To what extent can rising [CO2] ameliorate plant drought stress? N. Phytol. 231, 2118–2124 (2021).

    Article 
    CAS 

    Google Scholar 

  • Gampe, D. et al. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Change 11, 772–779 (2021).

    ADS 
    Article 

    Google Scholar 

  • Konings, A. G., Williams, A. P. & Gentine, P. Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation. Nat. Geosci. 10, 284–288 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Carminati, A. & Javaux, M. Soil rather than xylem vulnerability controls stomatal response to drought. Trends Plant Sci. 25, 868–880 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Anderegg, W. R. L., Trugman, A. T., Bowling, D. R., Salvucci, G. & Tuttle, S. E. Plant functional traits and climate influence drought intensification and land–atmosphere feedbacks. Proc. Natl Acad. Sci. USA 116, 14071–14076 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Humphrey, V. et al. Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature 592, 65–69 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Myneni, R. B., Hall, F. G., Sellers, P. J. & Marshak, A. L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosc. Rem. Sens. 33, 481–486 (1995).

    ADS 
    Article 

    Google Scholar 

  • Forzieri, G., Alkama, R., Miralles, D. G. & Cescatti, A. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science 356, 1180–1184 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Frankenberg, C. et al. Comment on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis”. Science 373, eaabg2947 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wang, S. et al. Response to Comments on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis”. Science 373 (2021).

  • Forzieri, G. et al. Increased control of vegetation on global terrestrial energy fluxes. Nat. Clim. Change 10, 356–362 (2020).

    ADS 
    Article 

    Google Scholar 

  • Seneviratne, S. I. et al. Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Sci. Rev. 99, 125–161 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Miguez-Macho, G. & Fan, Y. Spatiotemporal origin of soil water taken up by vegetation. Nature 598, 624–628 (2021).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Balsamo, G. et al. Satellite and in situ observations for advancing global Earth surface modelling: A Review. Remote Sens. 10, 2038 (2018).

    ADS 
    Article 

    Google Scholar 

  • Muñoz-Sabater, J. et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349–4383 (2021).

    ADS 
    Article 

    Google Scholar 

  • Molnar, C. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable (2021). [online: https://christophm.github.io/interpretable-ml-book/].

  • Camps-Valls, G. et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 7, eabc7447 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ohta, T. et al. Effects of waterlogging on water and carbon dioxide fluxes and environmental variables in a Siberian larch forest, 1998–2011. Agric. Meteorol. 188, 64–75 (2014).

    Article 

    Google Scholar 

  • Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fort, F. et al. Root traits are related to plant water‐use among rangeland Mediterranean species. Funct. Ecol. 31, 1700–1709 (2017).

    Article 

    Google Scholar 

  • Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. evolution 3, 772–779 (2019).

    Article 

    Google Scholar 

  • Rogers, A. et al. A roadmap for improving the representation of photosynthesis in Earth system models. N. Phytol. 213, 22–42 (2016).

    Article 

    Google Scholar 

  • Arora, V. K. & Boer, G. J. A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Glob. Change Biol. 11, 39–59 (2004).

    ADS 
    Article 

    Google Scholar 

  • Trugman, A. T., Medvigy, D., Mankin, J. S. & Anderegg, W. R. L. Soil moisture stress as a major driver of carbon cycle uncertainty. Geophys. Res. Lett. 45, 6495–6503 (2018).

    ADS 
    Article 

    Google Scholar 

  • Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).

    ADS 
    Article 

    Google Scholar 

  • Medlyn, B. E., De Kauwe, M. G. & Duursma, R. A. New developments in the effort to model ecosystems under water stress. N. Phytol. 212, 5–7 (2016).

    Article 

    Google Scholar 

  • Ito, A. & Oikawa, T. A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): a description based on dry-matter production theory and plot-scale validation. Ecol. Model. 151, 143–176 (2002).

    CAS 
    Article 

    Google Scholar 

  • Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mu, M. et al. Exploring how groundwater buffers the influence of heatwaves on vegetation function during multi-year droughts. Earth Syst. Dyn. 12, 919–938 (2021).

    ADS 
    Article 

    Google Scholar 

  • O, S. & Orth, R. Global soil moisture data derived through machine learning trained with in-situ measurements. Sci. Data 8, 170 (2021).

    Article 

    Google Scholar 

  • Dorigo, W. et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).

    ADS 
    Article 

    Google Scholar 

  • Wahr, J., Swenson, S., Zlotnicki, V. & Velicogna, I. Time-variable gravity from GRACE: first results. Geophys. Res. Lett. 31, L11501 (2004).

    ADS 
    Article 

    Google Scholar 

  • Tucker, C. J. et al. An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 26, 4485–4498 (2005).

    Article 

    Google Scholar 

  • Jiang, C. et al. Inconsistencies of interannual variability and trends in long‐term satellite leaf area index products. Glob. Change Biol. 23, 4133–4146 (2017).

    ADS 
    Article 

    Google Scholar 

  • Liu, Y. et al. Satellite-derived LAI products exhibit large discrepancies and can lead to substantial uncertainty in simulated carbon and water fluxes. Remote Sens. Environ. 206, 174–188 (2018).

    ADS 
    Article 

    Google Scholar 

  • Zhu, Z. et al. Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens. 5, 927–948 (2013).

    ADS 
    Article 

    Google Scholar 

  • Pedelty, J. et al. Generating a long-term land data record from the AVHRR and MODIS instruments. 2007 IEEE international Geoscience and remote sensing Symposium, 1021-1025 (2017).

  • Xiao, Z. et al. Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance. IEEE Trans. Geosci. Remote Sens. 54, 5301–5318 (2016).

    ADS 
    Article 

    Google Scholar 

  • Liu, Y., Liu, R. & Chen, J. M. Retrospective retrieval of long-term consistent global leaf area index (1981-2011) from combined AVHRR and MODIS data. J. Geophys. Res. 117, G04003 (2012).

    ADS 

    Google Scholar 

  • Verger, A., Baret, F. & Weiss, M. (2020). Algorithm Theoretical Basis Document – GEOV2/AVHRR: Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) and Fraction of green Vegetation Cover (FCOVER) from LTDR AVHRR. (Available at https://www.theia-land.fr/wp-content/uploads/2022/03/THEIA-SP-44-0207-CREAF_I2.50-1.pdf).

  • Liu, Y., De Jeu, R. A., McCabe, M. F., Evans, J. P. & Van Dijk, A. I. Global long‐term passive microwave satellite‐based retrievals of vegetation optical depth. Geophys. Res. Lett. 38 (2011).

  • Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Update high-resolution grids of monthly climatic observations-the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article 

    Google Scholar 

  • Kobayashi, S. et al. The JRA-55 Reanalysis: General Specifications and Basic Characteristics. J. Met. Soc. Jpn. 93, 5–48 (2015).

    Article 

    Google Scholar 

  • Li, X. & Xiao, J. Global climatic controls on interannual variability of ecosystem productivity: Similarities and differences inferred from solar-induced chlorophyll fluorescence and enhanced vegetation index. Agric. For. Meteorol. 288–289, 108018 (2020).

    ADS 
    Article 

    Google Scholar 

  • Walther, S. et al. Satellite observations of the contrasting response of trees and grasses to variations in water availability. Geophys. Res. Lett. 46, 1429–1440 (2020).

    ADS 
    Article 

    Google Scholar 

  • Li, M., Wu, P. & Ma, Z. A comprehensive evaluation of soil moisture and soil temperature from third-generation atmospheric and land reanalysis data sets. Int. J. Climatol. 40, 5744–5766 (2020).

    Article 

    Google Scholar 

  • Liu, L., Zhang, R. & Zuo, Z. Intercomparison of spring soil moisture among multiple reanalysis data sets over eastern China. J. Geophys. Res.: Atmospheres 119, 54–64 (2014).

    ADS 
    Article 

    Google Scholar 

  • Albergel, C., De Rosnay, P., Balsamo, G., Isaksen, L. & Muñoz-Sabater, J. Soil moisture analyses at ECMWF: Evaluation using global ground-based in situ observations. J. Hydrometeorol. 13, 1442–1460 (2012).

    ADS 
    Article 

    Google Scholar 

  • Albergel, C. et al. Skill and global trend analysis of soil moisture from reanalyses and microwave remote sensing. J. Hydrometeorol. 14, 1259–1277 (2013).

    ADS 
    Article 

    Google Scholar 

  • Jing, W., Song, J. & Zhao, X. Validation of ECMWF multi-layer reanalysis soil moisture based on the OzNet hydrology network. Water 10, 1123 (2018).

    Article 

    Google Scholar 

  • Albergel, C. et al. ERA-5 and ERA-Interim driven ISBA land surface model simulations: Which one performs better? Hydrol. Earth Syst. Sci. 22, 3515–3532 (2018).

    ADS 
    Article 

    Google Scholar 

  • Gelaro, R. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Martens, B. et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Dev. 10, 1903–1925 (2017).

    ADS 
    Article 

    Google Scholar 

  • Le Quéré, C. et al. Global Carbon Budget 2018. Earth Syst. Sci. Data. 10, 2141–2194 (2018).

    ADS 
    Article 

    Google Scholar 

  • Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).

    ADS 
    Article 

    Google Scholar 

  • Song, X. P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Siebert, S. et al. A global data set of the extent of irrigated land from 1900 to 2005. Hydrol. Earth Syst. Sci. 19, 1521–1545 (2015).

    ADS 
    Article 

    Google Scholar 

  • Budyko, M. I. & Miller, D. H. Climate and life. New York (Academic press, 1974).

  • Cleveland, W. S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74, 829–836 (1979).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    MATH 
    Article 

    Google Scholar 

  • Kraft, B., Jung, M., Körner, M., Koirala, S. & Reichstein, M. Towards hybrid modeling of the global hydrological cycle. Hydrol. Earth Syst. Sci. 26, 1579–1614 (2022).

    ADS 
    Article 

    Google Scholar 

  • Lundberg, S. M. & Lee, S. I. A unified approach to interpreting model predictions. (2017).

  • Besnard, S. et al. Global sensitivities of forest carbon changes to environmental conditions. Glob. Change Biol. 27, 6467–6483 (2021).

    Article 

    Google Scholar 

  • Hirsch, R. M., Slack, J. R. & Smith, R. A. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 18, 107–121 (1982).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Fisheries dataset on moulting patterns and shell quality of American lobsters H. americanus in Atlantic Canada

    A 26-year time series of mortality and growth of the Pacific oyster C. gigas recorded along French coasts