Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).
Google Scholar
Ellis, E. C. et al. Used planet: a global history. Proc. Natl Acad. Sci. USA 110, 7978–7985 (2013).
Google Scholar
Marlon, J. R. et al. Global biomass burning: a synthesis and review of Holocene paleofire records and their controls. Quat. Sci. Rev. 65, 5–25 (2013).
Google Scholar
Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).
Google Scholar
Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 52, 52–58 (2012).
Google Scholar
Boivin, N. L. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016).
Google Scholar
Petrozzi, F. et al. Surveys of mammal communities in a system of five forest reserves suggest an ongoing biotic homogenization process for the Niger Delta (Nigeria). Trop. Zool. 28, 95–113 (2015).
Google Scholar
Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
Google Scholar
Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).
Google Scholar
Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).
Google Scholar
Sax, D. F. & Gaines, S. D. Species diversity: from global decreases to local increases. Trends Ecol. Evol. 18, 561–566 (2003).
Google Scholar
Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).
Google Scholar
Finderup Nielsen, T., Sand‐Jensen, K., Dornelas, M. & Bruun, H. H. More is less: net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).
Google Scholar
Baiser, B., Olden, J. D., Record, S., Lockwood, J. L. & McKinney, M. L. Pattern and process of biotic homogenization in the New Pangaea. Proc. R. Soc. Lond. B: Biol. Sci. 279, 4772–4777 (2012).
Longman, E. K., Rosenblad, K. & Sax, D. F. Extreme homogenization: the past, present and future of mammal assemblages on islands. Glob. Ecol. Biogeogr. 27, 77–95 (2018).
Google Scholar
Spear, D. & Chown, S. L. Taxonomic homogenization in ungulates: patterns and mechanisms at local and global scales. J. Biogeogr. 35, 1962–1975 (2008).
Google Scholar
Tóth, A. B., Lyons, S. K. & Behrensmeyer, A. K. A century of change in Kenya’s mammal communities: increased richness and decreased uniqueness in six protected areas. PLoS ONE 9, e93092 (2014).
Google Scholar
Qian, H. & Ricklefs, R. E. The role of exotic species in homogenizing the North American flora. Ecol. Lett. 9, 1293–1298 (2006).
Google Scholar
Muthukrishnan, R. & Larkin, D. J. Invasive species and biotic homogenization in temperate aquatic plant communities. Glob. Ecol. Biogeogr. 29, 656–667 (2020).
Google Scholar
Early, R. et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7 1–9 (2016).
Olden, J. D. & Poff, N. L. Toward a mechanistic understanding and prediction of biotic homogenization. Am. Naturalist 162, 442–460 (2003).
Google Scholar
McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).
Google Scholar
Vellend, M. et al. Homogenization of forest plant communities and weakening of species–environment relationships via agricultural land use. J. Ecol. 95, 565–573 (2007).
Google Scholar
Byers, J. E., Wright, J. T. & Gribben, P. E. Variable direct and indirect effects of a habitat‐modifying invasive species on mortality of native fauna. Ecology 91, 1787–1798 (2010).
Google Scholar
Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A. & Ewers, R. M. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 22, 489–496 (2007).
Google Scholar
Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302 (1997).
Google Scholar
Lavery, T. H., Posala, C. K., Tasker, E. M. & Fisher, D. O. Ecological generalism and resilience of tropical island mammals to logging: a 23 year test. Glob. Change Biol. 26, 3285–3293 (2020).
Google Scholar
Smith, F. A., Smith, R. E. E., Lyons, S. K. & Payne, J. L. Body size downgrading of mammals over the late Quaternary. Science 360, 310–313 (2018).
Google Scholar
Sinclair, A. Mammal population regulation, keystone processes and ecosystem dynamics. Philos. Trans. R. Soc. B: Biol. Sci. 358, 1729–1740 (2003).
Google Scholar
Ellison, A. M. et al. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front. Ecol. Environ. 3, 479–486 (2005).
Google Scholar
O’Connor, N. E. & Crowe, T. P. Biodiversity loss and ecosystem functioning: distinguishing between number and identity of species. Ecology 86, 1783–1796 (2005).
Google Scholar
Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).
Google Scholar
Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).
Google Scholar
Mihoub, J.-B. et al. Setting temporal baselines for biodiversity: the limits of available monitoring data for capturing the full impact of anthropogenic pressures. Sci. Rep. 7, 1–13 (2017).
Google Scholar
Beller, E. et al. Toward principles of historical ecology. Am. J. Bot. 104, 645–648 (2017).
Google Scholar
Dietl, G. P. et al. Conservation paleobiology: leveraging knowledge of the past to inform conservation and restoration. Annu. Rev. Earth Planet. Sci. 43, 79–103 (2015).
Google Scholar
Stephens, L. et al. Archaeological assessment reveals Earth’s early transformation through land use. Science 365, 897–902 (2019).
Google Scholar
Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl Acad. Sci. USA 118 e2023483118 (2021).
Waters, M. R. Late Pleistocene exploration and settlement of the Americas by modern humans. Science 365 https://doi.org/10.1126/science.aat5447 (2019).
Bennett, M. R. et al. Evidence of humans in North America during the last glacial maximum. Science 373, 1528–1531 (2021).
Google Scholar
Lisiecki, L. E. & Raymo, M. E. Plio–Pleistocene climate evolution: trends and transitions in glacial cycle dynamics. Quat. Sci. Rev. 26, 56–69 (2007).
Google Scholar
Lyons, S. K., Smith, F. A. & Brown, J. H. Of mice, mastodons and men: human-mediated extinctions on four continents. Evol. Ecol. Res. 6, 339–358 (2004).
Barnosky, A. D. Megafauna biomass tradeoff as a driver of Quaternary and future extinctions. Proc. Natl Acad. Sci. USA 105, 11543–11548 (2008).
Google Scholar
Koch, P. L. & Barnosky, A. D. Late Quaternary extinctions: state of the debate. Ann. Rev. Ecol. Evol. Syst. 37 215–250 (2006).
Faith, J. T. & Surovell, T. A. Synchronous extinction of North America’s Pleistocene mammals. Proc. Natl Acad. Sci. USA 106, 20641–20645 (2009).
Google Scholar
Pineda-Munoz, S., Wang, Y., Lyons, S. K., Tóth, A. B. & McGuire, J. L. Mammal species occupy different climates following the expansion of human impacts. Proc. Natl Acad. Sci. USA 118, e1922859118 (2021).
Graham, R. W. et al. Spatial response of mammals to late quaternary environmental fluctuations. Science 272, 1601–1606 (1996).
Google Scholar
Blois, J. L., McGuire, J. L. & Hadly, E. A. Small mammal diversity loss in response to late-Pleistocene climatic change. Nature 465, 771–775 (2010).
Google Scholar
Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: individualistic responses of species in space and time. Proc. R. Soc. B: Biol. Sci. 277, 661 (2010).
Google Scholar
Lyons, S. K., Wagner, P. J. & Dzikiewicz, K. Ecological correlates of range shifts of Late Pleistocene mammals. Philos. Trans. R. Soc. B: Biol. Sci. 365, 3681–3693 (2010).
Google Scholar
Lyons, S. K. et al. The changing role of mammal life histories in Late Quaternary extinction vulnerability on continents and islands. Biol. Lett. 12, https://doi.org/10.1098/rsbl.2016.0342 (2016).
Pineda‐Munoz, S. et al. Body mass‐related changes in mammal community assembly patterns during the late Quaternary of North America. Ecography 44, 56–66 (2021).
Google Scholar
Lyons, S. K. A quantitative model for assessing community dynamics of Pleistocene mammals. Am. Naturalist 165, E168–E185 (2005).
Google Scholar
Lyons, S. K. et al. Holocene shifts in the assembly of plant and animal communities implicate human impacts. Nature 529, 80–83 (2016).
Google Scholar
Pires, M. M. et al. Pleistocene megafaunal interaction networks became more vulnerable after human arrival. Proc. R. Soc. B: Biol. Sci. 282, 20151367 (2015).
Google Scholar
Pires, M. M., Guimarães, P. R., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long‐distance seed‐dispersal services. Ecography 41, 153–163 (2018).
Google Scholar
Galetti, M. et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. 93, 845–862 (2018).
Google Scholar
Olden, J. D., Lockwood, J. L. & Parr, C. L. In Conservation biogeography (eds. Ladle, R. & Whittaker, R. J.) Ch. 9, 224–243 (John Wiley & Songs, 2011).
Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence-absence data. J. Anim. Ecol. 72, 367–382 (2003).
Google Scholar
Alroy, J. A new twist on a very old binary similarity coefficient. Ecology 96, 575–586 (2015).
Google Scholar
Ulrich, W. & Gotelli, N. J. Null model analysis of species nestedness patterns. Ecology 88, 1824–1831 (2007).
Google Scholar
Behrensmeyer, A. K., Western, D. & Boaz, D. E. D. New perspectives in vertebrate paleoecology from a recent bone assemblage. Paleobiology 5, 12–21 (1979).
Google Scholar
Behrensmeyer, A. K. & Dechant Boaz, D. E. In Fossils in the Making (ed. Behrensmeyer, A.K.) 72–92 (University of Chicago Press, 1980).
Andrews, P. Owls, caves and fossils: predation, preservation and accumulation of small mammal bones in caves, with an analysis of the Pleistocene cave faunas from Westbury-sub-Mendip, Somerset, UK (University of Chicago Press, 1990).
Badgley, C. Tectonics, topography, and mammalian diversity. Ecography 33, 220–231 (2010).
Buckley, L. B. & Jetz, W. Linking global turnover of species and environments. Proc. Natl Acad. Sci. USA 105, 17836–17841 (2008).
Google Scholar
Qian, H., Badgley, C. & Fox, D. L. The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America. Glob. Ecol. Biogeogr. 18, 111–122 (2009).
Google Scholar
Lorenz, D. J., Nieto-Lugilde, D., Blois, J. L., Fitzpatrick, M. C. & Williams, J. W. J. S. d. Downscaled and debiased climate simulations for North America from 21,000 years ago to 2100AD. 3, 160048 (2016).
Rosenblad, K. C. & Sax, D. F. A new framework for investigating biotic homogenization and exploring future trajectories: Oceanic island plant and bird assemblages as a case study. Ecography 40, 1040–1049 (2017).
Google Scholar
Kortz, A. R. & Magurran, A. E. Increases in local richness (α-diversity) following invasion are offset by biotic homogenization in a biodiversity hotspot. Biol. Lett. 15, 20190133 (2019).
Google Scholar
Castro, S. A. et al. Partitioning β-diversity reveals that invasions and extinctions promote the biotic homogenization of Chilean freshwater fish fauna. PLoS ONE 15, e0238767 (2020).
Google Scholar
Peoples, B. K., Davis, A. J., Midway, S. R., Olden, J. D. & Stoczynski, L. Landscape-scale drivers of fish faunal homogenization and differentiation in the eastern United States. Hydrobiologia 847, 3727–3741 (2020).
Google Scholar
Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T. & Ferrier, S. Space can substitute for time in predicting climate-change effects on biodiversity. Proc. Natl Acad. Sci. USA 110, 9374–9379 (2013).
Google Scholar
Qian, H. & Xiao, M. Global patterns of the beta diversity energy relationship in terrestrial vertebrates. Acta Oecol 39, 67–71 (2012).
Google Scholar
Fritz, S. A. et al. Twenty-million-year relationship between mammalian diversity and primary productivity. Proc. Natl Acad. Sci. USA 113, 10908–10913 (2016).
Google Scholar
Figueirido, B., Janis, C. M., Pérez-Claros, J. A., Renzi, M. D. & Palmqvist, P. Cenozoic climate change influences mammalian evolutionary dynamics. Proc. Natl Acad. Sci. USA 109, 722–727 (2012).
Google Scholar
Barnosky, A. D., Hadly, E. A. & Bell, C. J. Mammalian response to global warming on varied temporal scales. J. Mammal. 84, 354–368 (2003).
Google Scholar
Fraser, D., Hassall, C., Gorelick, R. & Rybczynski, N. Mean annual precipitation explains spatiotemporal patterns of Cenozoic mammal beta diversity and latitudinal diversity gradients in North America. PloS ONE 9, e106499 (2014).
Google Scholar
Darroch, S. A. F., Webb, A. E., Longrich, N. & Belmaker, J. Palaeocene–Eocene evolution of beta diversity among ungulate mammals in North America. Glob. Ecol. Biogeogr. 23, 757–768 (2014).
Google Scholar
Clark, P. U. et al. Global climate evolution during the last deglaciation. Proc. Natl Acad. Sci. USA 109, E1134–E1142 (2012).
Google Scholar
Andersen, K. K. et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147 (2004).
Google Scholar
Hodell, D. A. et al. Anatomy of Heinrich Layer 1 and its role in the last deglaciation. Paleoceanography 32, 284–303 (2017).
Google Scholar
McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).
Google Scholar
Thiagarajan, N., Subhas, A. V., Southon, J. R., Eiler, J. M. & Adkins, J. F. Abrupt pre-Bølling–Allerød warming and circulation changes in the deep ocean. Nature 511, 75–78 (2014).
Google Scholar
Alley, R. B. The Younger Dryas cold interval as viewed from central Greenland. Quat. Sci. Rev. 19, 213–226 (2000).
Google Scholar
Lyons, S. K. A quantitative assessment of the range shifts of Pleistocene mammals. J. Mammal. 84, 385–402 (2003).
Google Scholar
Davis, M. What North America’s skeleton crew of megafauna tells us about community disassembly. Proc. R. Soc. B. 284, 20162116 (2017).
Google Scholar
Tóth, A. B. et al. Reorganization of surviving mammal communities after the end-Pleistocene megafaunal extinction. Science 365, 1305–1308 (2019).
Google Scholar
Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).
Google Scholar
Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).
Google Scholar
Owen-Smith, R. N. Megaherbivores: the influence of very large body size on ecology (Cambridge university press, 1992).
Doughty, C. E. et al. Global nutrient transport in a world of giants. Proceedings of the National Academy of Sciences USA (2015).
Araujo, B. B., Oliveira-Santos, L. G. R., Lima-Ribeiro, M. S., Diniz-Filho, J. A. F. & Fernandez, F. A. Bigger kill than chill: the uneven roles of humans and climate on late Quaternary megafaunal extinctions. Quat. Int. 431, 216–222 (2017).
Google Scholar
Stewart, M., Carleton, W. C. & Groucutt, H. S. Climate change, not human population growth, correlates with Late Quaternary megafauna declines in North America. Nat. Commun. 12, 1–15 (2021).
Google Scholar
Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 1100–1103 (2009).
Google Scholar
Johnson, C. N. Ecological consequences of Late Quaternary extinctions of megafauna. Proc. R. Soc. Lond. B: Biol. Sci., rspb 2008, 1921 (2009).
Barnosky, A. D. et al. Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proc. Natl Acad. Sci. USA 113, 856–861 (2016).
Google Scholar
Kelt, D. A. & Van Vuren, D. Energetic constraints and the relationship between body size and home range area in mammals. Ecology 80, 337–340 (1999).
Google Scholar
McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).
Google Scholar
Arnan, X., Cerdá, X. & Rodrigo, A. Do Forest Fires Make Biotic Communities Homogeneous or Heterogeneous? Patterns of taxonomic, functional, and phylogenetic ant beta diversity at local and regional landscape scales. Front. Forests Glob. Change 3, https://doi.org/10.3389/ffgc.2020.00067 (2020).
Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 1–8 (2015).
Google Scholar
Luque-Larena, J. J. et al. Recent large-scale range expansion and outbreaks of the common vole (Microtus arvalis) in NW Spain. Basic Appl. Ecol. 14, 432–441 (2013).
Google Scholar
Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228 (2011).
Google Scholar
Rader, R., Bartomeus, I., Tylianakis, J. M. & Laliberté, E. The winners and losers of land use intensification: Pollinator community disassembly is non‐random and alters functional diversity. Divers. Distrib. 20, 908–917 (2014).
Google Scholar
Tilman, D. et al. Forecasting agriculturally driven global environmental change. science 292, 281–284 (2001).
Google Scholar
Price, T. D. Ancient farming in eastern North America. Proc. Natl Acad. Sci. USA 106, 6427–6428 (2009).
Google Scholar
Smith, B. D. The origins of agriculture in the Americas. Evolut. Anthropol.: Issues, N., Rev. 3, 174–184 (1994).
Google Scholar
Olden, J. D., Poff, N. L. & McKinney, M. L. Forecasting faunal and floral homogenization associated with human population geography in North America. Biol. Conserv. 127, 261–271 (2006).
Google Scholar
Olden, J. D., LeRoy Poff, N., Douglas, M. R., Douglas, M. E. & Fausch, K. D. Ecological and evolutionary consequences of biotic homogenization. Trends Ecol. Evol. 19, 18–24 (2004).
Google Scholar
Mori, A. S., Furukawa, T. & Sasaki, T. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88, 349–364 (2013).
Google Scholar
Ellis, E. C. & Ramankutty, N. Putting people in the map: anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447 (2008).
Google Scholar
Toivanen, T. et al. The many Anthropocenes: a transdisciplinary challenge for the Anthropocene research. Anthropocene Rev. 4, 183–198 (2017).
Google Scholar
Biotic homogenization (Github, 2022).
Brown, J. H. & Nicoletto, P. F. Spatial scaling of species composition: body masses of North American Land Mammals. Am. Naturalist 138, 1478–1512 (1991).
Google Scholar
Lyons, S. K. & Smith, F. A. In Animal body size: linking pattern and process across space, time, and taxonomic group (eds. Smith & S. Kathleen Lyons) (University of Chicago Press, 2013).
Graham, R. W. & E. L. Lundelius, J. FAUNMAP II: New data for North America with a temporal extension for the Blancan, Irvingtonian and early Rancholabrean. FAUNMAP II Database, version 1.0., 2010).
Haslett, J. & Parnell, A. A simple monotone process with application to radiocarbon-dated depth chronologies. J. Roy. Stat. Soc. Ser. C. (Appl. Stat.) 57, 399–418 (2008).
Google Scholar
Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R News 5 (2005).
raster: Geographic data analysis and modeling version 3.4-10 (2021).
mapdata: Extra Map Database. R package version 2.3.0. (2018).
maps: Draw Geographical Maps version 3.4.0 (2021).
Wickham, H. ggplot2: elegant graphics for data analysis (Springer-Verlag, 2016).
Grimm, E. C., Maher, L. J. Jr & Nelson, D. M. The magnitude of error in conventional bulk-sediment radiocarbon dates from central North America. Quatern. Res 72, 301–308 (2009).
Google Scholar
Whittaker, R. H. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 30, 279–338 (1960).
Google Scholar
R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).
Baselga, A. & Orme, D. Package ‘betapart’. (2012).
Package vegan version 2.5-7 (2012).
Vavrek, M. J. fossil: palaeoecological and palaeogeographical analysis tools. Palaeontologia Electron. 14, 1T (2011).
Marschner, I. C. glm2: Fitting generalized linear models with convergence problems. R. J. 3, 12–15 (2011).
Google Scholar
Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).
Google Scholar
Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).
Google Scholar
Nekola, J. C. & McGill, B. J. Scale dependency in the functional form of the distance decay relationship. Ecography 37, 309–320 (2014).
Google Scholar
Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).
Google Scholar
Marion, Z. H., Fordyce, J. A. & Fitzpatrick, B. M. Pairwise beta diversity resolves an underappreciated source of confusion in calculating species turnover. Ecology 98, 933–939 (2017).
Google Scholar
Calenge, C. A collection of tools for the estimation of animals home range. (2017).
Ulrich, W. et al. Species richness correlates of raw and standardized co‐occurrence metrics. Glob. Ecol. Biogeogr. 27, 395–399 (2018).
Google Scholar
Gotelli, N. J. Null model analysis of species co-occurrence patterns. Ecology 81, 2606–2621 (2000).
Google Scholar
Newell, N. D. Adequacy of the fossil record. J. Paleontol. 33, 488–499 (1959).
Raup, D. M. Biases in the fossil record of species and genera. Bull. Carnegie Mus. Nat. Hist. 13, 85–91 (1979).
Kidwell, S. M. & Holland, S. M. The quality of the fossil record: implications for evolutionary analyses. Annu. Rev. Ecol. Syst. 33, 561–588 (2002).
Google Scholar
Benton, M. J., Dunhill, A. M., Lolyd, G. T. & Marx, F. G. In Comparing the geological and fossil records: implications for biodiversity studies Vol. 358 (eds. McGowan, A. J. & A. B. Smith, A. B.) 63–94 (Geological Society of London, 2011).
Graham, C. H. & Fine, P. V. A. Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecol. Lett. 1265–1277 (2008).
Patterson, B. D. et al. Digital Distribution Maps of the Mammals of the Western Hemisphere, version 3.0. NatureServe, (Arlington, Virginia, USA, 2007).
Wilson, D. E. & Reeder, D. M. Mammal species of the world:ataxonomic and geographic reference. 3rd edition. (Johns Hopkins University Press,Baltimore, Maryland, 2,142 pp 2005).
Fraser, D. & Lyons, S. K. Biotic interchange has structured Western Hemisphere mammal communities. Glob. Ecol. Biogeogr. 26, 1408–1422 (2017).
Google Scholar
Bivand, R. & Lewin-Koh, N. J. Maptools: Tools for Reading and Handling Spatial Objects R package (2021).
Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA 104, 13384–13389 (2007).
Google Scholar
Bivand, R. S., Pebesma, E. J. & Gomez-Rubio, V. Applied spatial data analysis with R. (Springer, 2008).
Currie, D. J. et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121–1134 (2004).
Google Scholar
Source: Ecology - nature.com