Biere, J. M. & Uetz, G. W. Web orientation in the spider Micrathena gracilis (Araneae: Araneidae). Ecology 62(2), 336–344 (1981).
Google Scholar
Korb, J. & Linsenmair, K. E. The architecture of termite mounds: a result of a trade-off between thermoregulation and gas exchange? Behav. Ecol. 10(3), 312–316 (1999).
Google Scholar
Hansell, M. H. Bird nests and construction behaviour (Cambridge University Press, 2000).
Google Scholar
Kawase, H., Okata, Y. & Ito, K. Role of huge geometric circular structures in the reproduction of a Marine Pufferfish. Sci. Rep. 3, 1–5 (2013).
Google Scholar
Dawkins, R. The extended phenotype 295 (Oxford University Press, 1982).
Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. Niche construction. Am. Nat. 147(4), 641–648 (1996).
Google Scholar
Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. Niche construction: the Neglected process in evolution (Princeton University Press, 2003).
Short, L. L. Burdens of the picid hole-excavating habit. Wilson Bull. 91(1), 16–28 (1979).
Wiebe, K. L., Koenig, W. D. & Martin, K. Costs and benefits of nest reuse versus excavation in cavity-nesting birds. Ann. Zool. Fenn. 44(3), 209–217 (2007).
Landler, L. et al. Global trends in woodpecker cavity orientation: latitudinal and continental effects suggest regional climate influence. Acta Ornithol. 49(2), 257–266 (2014).
Google Scholar
Ojeda, V. et al. Latitude does not influence cavity entrance orientation of South American avian excavators. Auk 138(1), ukaa064 (2021).
Google Scholar
Wiebe, K. L. Microclimate of tree cavity nests: is it important for reproductive success in Northern Flickers? Auk 118(2), 412–421 (2001).
Google Scholar
Schaaf, A. A. Effects of sun exposure and vegetation cover on Woodpecker nest orientation in subtropical forests of South America. J. Ethol. 38, 117–120 (2019).
Google Scholar
Hooge, P. N., Stanback, M. T. & Koenig, W. D. Nest-site selection in the acorn woodpecker. Auk 116(1), 45–54 (1999).
Google Scholar
Schaaf, A. A. & de la Pena, M. R. Bird nest orientation and local temperature: an analysis over three decades. Ecology 20, e03042 (2020).
Charter, M. et al. Does nest box location and orientation affect occupation rate and breeding success of barn owls Tyto alba in a semi-arid environment? Acta Ornithol. 45(1), 115–119 (2010).
Google Scholar
Butler, M. W., Whitman, B. A. & Dufty, A. M. Nest box temperature and hatching success of American kestrels varies with nest box orientation. Wilson J. Ornithol. 121(4), 778–782 (2009).
Google Scholar
Goodenough, A. E. et al. Nestbox orientation: a species-specific influence on occupation and breeding success in woodland passerines. Bird Study 55(2), 222–232 (2008).
Google Scholar
Viñuela, J. & Sunyer, C. Nest orientation and hatching success of black kites milvus migrans in Spain. Ibis 134(4), 340–345 (1992).
Google Scholar
Larson, E. R. et al. How does nest box temperature affect nestling growth rate and breeding success in a parrot?. Emu 115(3), 247–255 (2015).
Google Scholar
Austin, G. T. Nesting success of the cactus wren in relation to nest orientation. Condor 76(2), 216–217 (1974).
Google Scholar
Verbeek, N. A. Nesting success and orientation of water pipit Anthus spinoletta nests. Ornis Scand. 25, 37–39 (1981).
Google Scholar
Conner, R. N. & Rudolph, D. C. Excavation dynamics and use patterns of red-cockaded woodpecker cavities: relationships with cooperative breeding. Red cockaded Woodpecker: recovery, ecology, and management. Center for Applied Studies in Forestry, College of Forestry, Stephen F. Austin State University, Nacogdoches, TX, 1995: 343–352.
Harding, S. R. & Walters, J. R. Dynamics of cavity excavation by red-cockaded woodpeckers. In Red-Cockaded Woodpecker: Road to Recovery (eds Costa, R. & Daniels, S.) 412–422 (Hancock House, 2004).
Harding, S. R. & Walters, J. R. Processes regulating the population dynamics of red-cockaded woodpecker cavities. J. Wildl. Manage. 66(4), 1083–1095 (2002).
Google Scholar
Dennis, J. V. The yellow-shafted flicker (Colaptes Auratus) on Nantucket Island, Massachusetts. Bird Banding 40(4), 290–308 (1969).
Google Scholar
Baker, W. W. Progress report on life history studies of the red-cockaded woodpecker at Tall Timbers Research Station. Ecology and Management of the Redcockaded Woodpecker 44–59 (US Bureau of Sport Fisheries and Wildlife and Tall Timbers Research Station, 1971).
Dennis, J. V. Species using red-cockaded woodpecker holes in Northeastern South Carolina. Bird-Banding 42(2), 79–87 (1971).
Google Scholar
Conner, R. N. et al. Red-cockaded woodpecker nest-cavity selection: relationships with cavity age and resin production. Auk 115(2), 447–454 (1998).
Google Scholar
Conner, R. N. Orientation of entrances to woodpecker nest cavities. Auk 92(2), 371–374 (1975).
Google Scholar
Copeyon, C. K., Walters, J. R. & Carter, J. III. Induction of red-cockaded woodpecker group formation by artificial cavity construction. J. Wildl. Manage. 55(4), 549–556 (1991).
Google Scholar
Locke, B. A. & Conner, R. N. A statistical analysis of the orientation of entrances to redcockaded woodpecker cavities. In Red-Cockaded Woodpecker Symposium II (Florida Game and Fresh Water Fish Commission, 1983).
Lay, D. W., Red-cockaded woodpecker study. Texas Parks and Wildlife Department. Project W-80-R-16. 1973. p. 33.
Jones, H. K. & Ott, F. T. Some characteristics of red-cockaded woodpecker cavity trees in Georgia. Oriole 38, 33–39 (1973).
Hopkins, M. L. & Lynn, T. E. Jr. Some characteristics of red-cockaded woodpecker cavity trees and management implications in South Carolina. Ecology and Management of The Red-Cockaded Woodpecker 140–169 (US Bureau of Sport Fishing and Wildlife and Tall Timbers Research Station, 1971).
Wood, D. A. Foraging and colony habitat characteristics of the red-cockaded woodpecker in Oklahoma. In Red-Cockaded Woodpecker Symposium II 51–58 (Florida Game and Fresh Water Fish Commission, 1983).
Kalisz, P. J. & Boettcher, S. E. Active and abandoned red-cockaded woodpecker habitat in Kentucky. J. Wildl. Manage. 25, 146–154 (1991).
Google Scholar
Walters, J. R., Doerr, P. D. & J. H. Carter, III. The cooperative breeding system of the red cockaded woodpecker. Ethology 78, 275–305 (1988).
Google Scholar
Batschelet, E. Circular statistics in biology (Academic Press, 1981).
Google Scholar
Agostinelli, C. & U. Lund, R package “circular”: circular statistics. R package version 0.4-7. https://r-forge.r-project.org/projects/circular (2013).
Hijmans, R. J. & Etten, J. V. Raster: Geographic analysis and modeling with raster data. R package version 2.0-12 (2012).
R Development Core Team R. A language and environment for statistical computing (R Foundation for Statistical Computing, 2012).
Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22(7), 1–19 (2007).
Google Scholar
Cox, N. J. Speaking Stata: In praise of trigonometric predictors. Stand. Genomic Sci. 6(4), 561–579 (2006).
Smith, J. A. et al. How effective is the Safe Harbor program for the conservation of Red-cockaded Woodpeckers? Condor Ornithol. Appl. 120(1), 223–233 (2018).
Zuur, A. et al. Mixed effects models and extensions in ecology with R (Springer, 2009).
Google Scholar
Bates, D., et al., lme4: Linear mixed-effects models using Eigen and S4. 2014: http://CRAN.R-project.org/package=lme4.
Conner, R. N., Rudolph, D. C. & Walters, J. R. The red-cockaded woodpecker: surviving in a fire-maintained ecosystem (University of Texas Press, 2001).
Google Scholar
Rudolph, D. C., Kyle, H. & Conner, R. N. Red-cockaded woodpeckers vs rat snakes: the effectiveness of the resin barrier. Wilson Bull. 102(1), 14–22 (1990).
Conner, R. N. The effect of tree hardness on woodpecker nest entrance orientation. Auk 94(2), 369–370 (1977).
Google Scholar
Jackson, J. A. & Jackson, B. J. Ecological relationships between fungi and woodpecker cavity sites. Condor 106(1), 37–49 (2004).
Google Scholar
Jusino, M. A. et al. Experimental evidence of a symbiosis between red-cockaded woodpeckers and fungi. Proc. R. Soc. B Biol. Sci. 2016(283), 20160106 (1827).
Losin, N. et al. Relationship between aspen heartwood rot and the location of cavity excavation by a primary cavity-nester, the Red-naped Sapsucker. Condor 108(3), 706–710 (2006).
Google Scholar
Williamson, L., Garcia, V. & Walters, J. R. Life history trait differences in isolated populations of the endangered Red-cockaded Woodpecker. Ornis Hungar. 24(1), 55–68 (2016).
Google Scholar
DeMay, S. M. & Walters, J. R. Variable effects of a changing climate on lay dates and productivity across the range of the Red-cockaded Woodpecker. Condor 20, 20 (2019).
Garcia, V. Lifetime fitness and changing life history traits in red-cockaded woodpeckers (Virginia Tech, 2014).
Delmore, K. E. & Irwin, D. E. Hybrid songbirds employ intermediate routes in a migratory divide. Ecol. Lett. 17(10), 1211–1218 (2014).
Google Scholar
Helbig, A. J. Inheritance of migratory direction in a bird species: a cross-breeding experiment with SE-and SW-migrating blackcaps (Sylvia atricapilla). Behav. Ecol. Sociobiol. 28(1), 9–12 (1991).
Google Scholar
Source: Ecology - nature.com