in

Impact of squid predation on juvenile fish survival

  • Bailey, K. M. & Houde, E. D. Predation on eggs and larvae of marine fishes and the recruitment problem. Adv. Mar. Biol. 25, 1–83. https://doi.org/10.1016/S0065-2881(08)60187-X (1989).

    Article 

    Google Scholar 

  • Houde, E. D. Fish early life dynamics and recruitment variability. Am. Fish. Soc. Symp. 2, 17–29 (1987).

    ADS 

    Google Scholar 

  • Anderson, J. T. A review of size dependent survival during pre-recruit stages of fishes in relation to recruitment. J. Northw. Atl. Fish. Sci. 8, 55–66. https://doi.org/10.2960/J.v8.a6 (1988).

    Article 

    Google Scholar 

  • McCarthy, I. D. Temporal repeatability of relative standard metabolic rate in juvenile Atlantic salmon and its relation to life history variation. J. Fish Biol. 57, 224–238. https://doi.org/10.1111/j.1095-8649.2000.tb00788.x (2000).

    Article 

    Google Scholar 

  • Biro, P. A. & Stamps, J. A. Do consistent individual differences in metabolic rate promote consistent individual differences in behavior?. Trends Ecol. Evol. 25, 653–659. https://doi.org/10.1016/j.tree.2010.08.003,Pubmed:20832898 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Endler, J. A. Natural Selection in the Wild (Princeton Univ. Pr., 1986).

  • Meekan, M. G. & Fortier, L. Selection for fast growth during the larval life of Atlantic cod Gadus morhua on the Scotian Shelf. Mar. Ecol. Prog. Ser. 137, 25–37. https://doi.org/10.3354/meps137025 (1996).

    ADS 
    Article 

    Google Scholar 

  • Gilly, W. F. et al. Vertical and horizontal migrations by the jumbo squid Dosidicus gigas revealed by electronic tagging. Mar. Ecol. Prog. Ser. 326, 1–17 (2006).

    ADS 
    Article 

    Google Scholar 

  • Watanabe, H., Kubodera, T., Moku, M. & Kawaguchi, K. Diel vertical migration of squid in the warm core ring and cold water masses in the transition region of the western North Pacific. Mar. Ecol. Prog. Ser. 315, 187–197. https://doi.org/10.3354/meps315187 (2006).

    ADS 
    Article 

    Google Scholar 

  • Phillips, K. L., Jackson, G. D. & Nichols, P. D. Predation on myctophids by the squid Moroteuthis ingens around Macquarie and Heard Islands: stomach contents and fatty acid analyses. Mar. Ecol. Prog. Ser. 215, 179–189. https://doi.org/10.3354/meps215179 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Field, J. C., Baltz, K., Phillips, A. J. & Walker, W. A. Range expansion and trophic interactions of the jumbo squid, Dosidicus gigas, in the California Current. CalCOFI Rep. 48, 131–146 (2007).

    Google Scholar 

  • Ellis, T. & Gibson, R. N. Size-selective predation of 0-group flatfishes on a Scottish coastal nursery ground. Mar. Ecol. Prog. Ser. 127, 27–37. https://doi.org/10.3354/meps127027 (1995).

    ADS 
    Article 

    Google Scholar 

  • Takasuka, A., Aoki, I. & Oozeki, Y. Predator-specific growth-selective predation on larval Japanese anchovy Engraulis japonicus. Mar. Ecol. Prog. Ser. 350, 99–107. https://doi.org/10.3354/meps07158 (2007).

    ADS 
    Article 

    Google Scholar 

  • Tucker, S., Hipfner, J. M. & Trudel, M. Size- and condition-dependent predation: A seabird disproportionately targets substandard individual juvenile salmon. Ecology 97, 461–471. https://doi.org/10.1890/15-0564.1,Pubmed:27145620 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Rodhouse, P. G. & Nigmatullin, C. M. Role as consumers. Phil. Trans. R. Soc. Lond. B 351, 1003–1022. https://doi.org/10.1098/rstb.1996.0090 (1996).

    ADS 
    Article 

    Google Scholar 

  • Hunsicker, M. E. & Essington, T. E. Size-structured patterns of piscivory of the longfin inshore squid (Loligo pealeii) in the mid-Atlantic continental shelf ecosystem. Can. J. Fish. Aquat. Sci. 63, 754–765. https://doi.org/10.1139/f05-258 (2006).

    Article 

    Google Scholar 

  • Hunsicker, M. E. & Essington, T. E. Evaluating the potential for trophodynamic control of fish by the longfin inshore squid (Loligo pealeii) in the northwest Atlantic Ocean. Can. J. Fish. Aquat. Sci. 65, 2524–2535. https://doi.org/10.1139/F08-154 (2008).

    Article 

    Google Scholar 

  • Wang, K. Y., Liao, C. H. & Lee, K. T. Population and maturation dynamics of the swordtip squid (Photololigo edulis) in the southern East China Sea. Fish. Res. 90, 178–186. https://doi.org/10.1016/j.fishres.2007.10.015 (2008).

    Article 

    Google Scholar 

  • Sassa, C., Yamamoto, K., Tsukamoto, Y., Konishi, Y. & Tokimura, M. Distribution and migration of age-0 jack mackerel (Trachurus japonicus) in the East China and Yellow Seas, based on seasonal bottom trawl surveys. Fish. Oceanogr. 18, 255–267. https://doi.org/10.1111/j.1365-2419.2009.00510.x (2009).

    Article 

    Google Scholar 

  • Tokai, T., Shiode, D., Sakai, T. & Yoda, M. Codend selectivity in the East China Sea of a trawl net with the legal minimum mesh size. Fish. Sci. 85, 19–32. https://doi.org/10.1007/s12562-018-1270-x (2019).

    CAS 
    Article 

    Google Scholar 

  • Sassa, C. & Konishi, Y. Vertical distribution of jack mackerel Trachurus japonicus larvae in the southern part of the East China Sea. Fish. Sci. 72, 612–619. https://doi.org/10.1111/j.1444-2906.2006.01191.x (2006).

    CAS 
    Article 

    Google Scholar 

  • Takahashi, M., Sassa, C. & Tsukamoto, Y. Growth-selective survival of young jack mackerel Trachurus japonicus during transition from pelagic to demersal habitats in the East China Sea. Mar. Biol. 159, 2675–2685. https://doi.org/10.1007/s00227-012-2025-3 (2012).

    Article 

    Google Scholar 

  • Ishida, K. Feeding ecology of swordtip squid (Loligo edulis). Rep. Shimane Pref. Fish. Exp. Stan. 3, 31–35 (1981) (in Japanese).

    Google Scholar 

  • Tashiro, M., Tokunaga, T., Machida, S. & Takata, J. Distribution of a squidfish, Loliogo edulis HOYLE, in the East China Sea. Bull. Nagasaki Pref. Inst. Fish. 7, 21–30 (1981) (in Japanese).

    Google Scholar 

  • Jennings, S. & Warr, K. J. Smaller predator-prey body size ratios in longer food chains. Proc. Biol. Sci. 270, 1413–1417. https://doi.org/10.1098/rspb.2003.2392 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barnes, C., Maxwell, D., Reuman, D. C. & Jennings, S. Global patterns in predator-prey size relationships reveal size dependency of trophic transfer efficiency. Ecology 91, 222–232. https://doi.org/10.1890/08-2061.1 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Cabana, G. & Rasmussen, J. B. Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature 372, 255–257. https://doi.org/10.1038/372255a0 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Castilla, A. C., Hernández-Urcera, J., Gouranguine, A., Guerra, Á. & Cabanellas-Reboredo, M. Predation behaviour of the European squid Loligo vulgaris. J. Ethol. 38, 311–322. https://doi.org/10.1007/s10164-020-00652-4 (2020).

    Article 

    Google Scholar 

  • Fiorito, G. et al. Guidelines for the Care and Welfare of Cephalopods in Research–A consensus based on an initiative by CephRes, FELASA and the Boyd Group. Lab. Anim. 49, 1–90. https://doi.org/10.1177/0023677215580006la.sagepub.com (2015).

    Article 
    PubMed 

    Google Scholar 

  • Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411 (2020). https://doi.org/10.1371/journal.pbio.3000411

  • Campana, S. E. How reliable are growth back-calculations based on otoliths?. Can. J. Fish. Aquat. Sci. 47, 2219–2227. https://doi.org/10.1139/f90-246 (1990).

    Article 

    Google Scholar 

  • Xie, S. et al. Growth and morphological development of sagittal otoliths of larval and early juvenile Trachurus japonicus. J. Fish Biol. 66, 1704–1719. https://doi.org/10.1111/j.0022-1112.2005.00717.x (2005).

    Article 

    Google Scholar 

  • Yasui, T. & Sakurai, Y. Gastric evacuation rate of Todarodes pacificus. Rep. Annu. Meet. Squid Res 32, 55–57 (2005) (in Japanese).

    Google Scholar 

  • Šifner, S. K. & Vrgoč, N. Population structure, maturation and reproduction of the European squid, Loligo vulgaris, in the Central Adriatic Sea. Fish. Res. 69, 239–249. https://doi.org/10.1016/j.fishres.2004.04.011 (2004).

    Article 

    Google Scholar 

  • Kono, N., Tsukamoto, Y. & Zenitani, H. RNA:DNA ratio for diagnosis of the nutritional condition of Japanese anchovy larvae Engraulis japonicus during the first-feeding stage. Fish. Sci. 69, 1096–1102. https://doi.org/10.1111/j.0919-9268.2003.00733.x (2003).

    CAS 
    Article 

    Google Scholar 

  • Booman, C., Folkvord, A. & Hunter, J. R. Responsiveness of starved northern anchovy Engraulis mordax larvae to predation attacks by adult anchovy. Fish. Bull. 89, 707–711 (1991).

    Google Scholar 

  • Chick, J. H. & Van Den Avyle, M. J. Effects of feeding ration on larval swimming speed and responsiveness to predator attacks: Implications for cohort survival. Can. J. Fish. Aquat. Sci. 57, 106–115. https://doi.org/10.1139/f99-185 (2000).

    Article 

    Google Scholar 

  • Hunsicker, M. E. et al. Functional responses and scaling in predator-prey interactions of marine fishes: Contemporary issues and emerging concepts. Ecol. Lett. 14, 1288–1299. https://doi.org/10.1111/j.1461-0248.2011.01696.x (2011).

    Article 
    PubMed 

    Google Scholar 

  • Chambers, R. C. & Miller, T. J. Evaluating fish growth by means of otolith increment analysis: spectral properties of individual-level longitudinal data in in Recent Developments in Fish Otolith Research (ed. Secor, D. H., Dean, J. M. & Campana, S. E.) 155–175 (University of South Carolina Press, 1995).

  • Mizutani, T. et al. Diel variability in the catch composition of bottom trawl survey in East China Sea. Nippon Suisan Gakkaishi 71, 44–53 (2005). (in Japanese with English abstract). https://doi.org/10.2331/suisan.71.44.

  • Sassa, C., Takahashi, M., Konishi, Y. & Tsukamoto, Y. Interannual variations in distribution and abundance of Japanese jack mackerel Trachurus japonicus larvae in the East China Sea. ICES J. Mar. Sci. 73, 1170–1185. https://doi.org/10.1093/icesjms/fsv269 (2016).

    Article 

    Google Scholar 

  • Takahashi, M., Sassa, C., Nishiuchi, K. & Tsukamoto, Y. Interannual variations in rates of larval growth and development of jack mackerel (Trachurus japonicus) in the East China Sea: Implications for juvenile survival. Can. J. Fish. Aquat. Sci. 73, 155–162. https://doi.org/10.1139/cjfas-2015-0077 (2016).

    Article 

    Google Scholar 

  • Takahashi, M., Sassa, C., Nishiuchi, K. & Tsukamoto, Y. Variability in growth rates of Japanese jack mackerel Trachurus japonicus larvae and juveniles in the East China Sea—effects of temperature and prey abundance in in Kuroshio Current, Physical, Biogeochemical and Ecosystem Dynamics (ed. Nagai, T., Saito, H., Suzuki, K. & Takahashi, M.) 295–307 (Wiley, 2019).

  • Anraku, M. & Azeta, M. The feeding habits of larvae and juveniles of the yellowtail, Seriola quinqueradiata Temminck et Schlegel, associated with floating seaweeds. Bull. Seikai Reg. Fish. Res. Lab 33, 13–45 (1965) (in Japanese with English abstract).

    Google Scholar 

  • Villanueva, R., Perricone, V. & Fiorito, G. Cephalopods as predators: a short journey among behavioral flexibilities, adaptations, and feeding habits. Front. Physiol. 8, 598. https://doi.org/10.3389/fphys.2017.00598,Pubmed:28861006 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, R., Zuo, T. & Wang, K. The Yellow Sea Cold Bottom Water—an oversummering site for Calanus sinicus (Copepoda, Crustacea). J. Plankton Res. 25, 169–183. https://doi.org/10.1093/plankt/25.2.169 (2003).

    CAS 
    Article 

    Google Scholar 

  • Sassa, C., Kitajima, S., Nishiuchi, K. & Takahashi, M. Ontogenetic and inter-annual variation in the diet of Japanese jack mackerel (Trachurus japonicus) juveniles in the East China Sea. J. Mar. Biol. Assoc. U K 99, 525–538. https://doi.org/10.1017/S0025315418000206 (2019).

    Article 

    Google Scholar 

  • Nakazawa, T., Ushio, M. & Kondoh, M. Scale dependence of predator–prey mass ratio: Determinants and applications. Adv. Ecol. Res. 45, 269–302. https://doi.org/10.1016/B978-0-12-386475-8.00007-1 (2011).

    Article 

    Google Scholar 

  • Ohshimo, S., Tanaka, H., Nishiuchi, K. & Yasuda, T. Trophic positions and predator-prey mass ratio of the pelagic food web in the East China Sea and Sea of Japan. Mar. Freshw. Res. 67, 1692–1699. https://doi.org/10.1071/MF15115 (2016).

    Article 

    Google Scholar 

  • Vidal, E. A. G. & Salvador, B. The tentacular strike behavior in squid: functional interdependency of morphology and predatory behaviors during ontogeny. Front. Physiol. 10, 1558. https://doi.org/10.3389/fphys.2019.01558 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doubleday, Z. A. et al. Global proliferation of cephalopods. Curr. Biol. 26, R406–R407. https://doi.org/10.1016/j.cub.2016.04.002 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Overholtz, W. J., Link, J. S. & Suslowicz, L. E. Consumption of important pelagic fish and squid by predatory fish in the northeastern USA shelf with some fishery comparisons. ICES J. Mar. Sci. 57, 1147–1159. https://doi.org/10.1006/jmsc.2000.0802 (2000).

    Article 

    Google Scholar 

  • Montevecchi, W. A. & Myers, R. A. Prey harvests of seabirds reflect pelagic fish and squid abundance on multiple spatial and temporal scales. Mar. Ecol. Prog. Ser. 117, 1–9. https://doi.org/10.3354/meps117001 (1995).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Expanding the phylogenetic distribution of cytochrome b-containing methanogenic archaea sheds light on the evolution of methanogenesis

    Pursuing progress at the nanoscale