Burbidge, A. A. & Abbott, I. Mammals on Western Australian islands: occurrence and preliminary analysis. Aust. J. Zool. 65, 183–195. https://doi.org/10.1071/zo17046 (2017).
Google Scholar
Fischer, J. & Lindenmayer, D. B. An assessment of the published results of animal relocations. Biol. Conserv. 96, 1–11. https://doi.org/10.1016/S0006-3207(00)00048-3 (2000).
Google Scholar
Legge, S. et al. Havens for threatened Australian mammals: the contributions of fenced areas and offshore islands to the protection of mammal species susceptible to introduced predators. Wildl. Res. 45, 627–644. https://doi.org/10.1071/wr17172 (2018).
Google Scholar
Morris, K. et al. Forty years of fauna translocations in Western Australia: lessons learned. In Advances in Reintroduction Biology of Australian and New Zealand Fauna (eds Armstrong, D. P. et al.) (CSIRO Publishing, 2015).
Seddon, P. J., Moro, D., Mitchell, N. J., Chauvenet, A. & Mawson, P. Proactive conservation or planned
invasion? Past, current and future use of
assisted colonisation. In Advances in Reintroduction Biology of Australian and New Zealand Fauna (eds Armstrong, D. P. et al.) (CSIRO Publishing, 2015).
Weeks, A. R. et al. Conserving and enhancing genetic
diversity in translocation programmes. In Advances in Reintroduction Biology of Australian and New Zealand Fauna (eds Armstrong, D. P. et al.) (CSIRO Publishing, 2015).
IUCN/SSC. Guidelines for Reintroductions and Other Conservation Translocations. Report No. 1.0, viiii + 57 (Gland, Switzerland, 2013).
Allendorf, F. W. & Ryman, N. The role of genetics in population viability analysis. In Population Viability Analysis (eds Beissinger, S. R. & McCullough, D. R.) 50–85 (University of Chicago Press, 2002).
Gilpin, M. E. & Soule, M. E. Minimum viable populations: process of species extinctions. In Conservation Biology: The Science of Scarcity and Diversity (ed Soule, M. E.) 19–34 (Sinauer, 1986).
Frankham, R. et al. Predicting the probability of outbreeding depression. Conserv. Biol. 25, 465–475. https://doi.org/10.1111/j.1523-1739.2011.01662.x (2011).
Google Scholar
IUCN. IUCN Red List Categories and Criteria: Version 3.1. iv + 32 (Gland, Switzerland Cambridge, UK, 2012).
Willoughby, J. R. et al. The reduction of genetic diversity in threatened vertebrates and new recommendations regarding IUCN conservation rankings. Biol. Conserv. 191, 495–503. https://doi.org/10.1016/j.biocon.2015.07.025 (2015).
Google Scholar
Allendorf, F. W. Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol. 5, 181–190. https://doi.org/10.1002/zoo.1430050212 (1986).
Google Scholar
Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140. https://doi.org/10.1016/j.biocon.2005.05.002 (2005).
Google Scholar
Easton, L. J., Bishop, P. J. & Whigham, P. A. Balancing act: modelling sustainable release numbers for translocations. Anim. Conserv. https://doi.org/10.1111/acv.12558 (2019).
Google Scholar
Allendorf, F. W., England, P. R., Luikart, G., Ritchie, P. A. & Ryman, N. Genetic effects of harvest on wild animal populations. Trends Ecol. Evol. 23, 327–337. https://doi.org/10.1016/j.tree.2008.02.008 (2008).
Google Scholar
Snyder, N. F. R. & Snyder, H. The California Condor: A Saga of Natural History and Conservation 1st edn. (Princeton University Press, 2000).
Kuchling, G., Burbridge, A. A., Page, M. & Olejnik, C. Western Swamp Tortoise Pseudemydura umbrina: slow and steady wins the race. In Recovering Australian Threatened Species: A Book of Hope (eds Garnett, S. et al.) 217–226 (CSIRO, 2018).
Hogg, C. J. Preserving Australian native fauna: zoo-based breeding programs as part of a more unified strategic approach. Aust. J. Zool. 61, 101–108. https://doi.org/10.1071/zo13014 (2013).
Google Scholar
Snyder, N. F. R. et al. Limitations of captive breeding in endangered species recovery. Conserv. Biol. 10, 338–348. https://doi.org/10.1046/j.1523-1739.1996.10020338.x (1996).
Google Scholar
Frankham, R. Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol. Ecol. 24, 2610–2618. https://doi.org/10.1111/mec.13139 (2015).
Google Scholar
Weeks, A. R. et al. Assessing the benefits and risks of translocations in changing environments: A genetic perspective. Evol. Appl. 4, 709–725. https://doi.org/10.1111/j.1752-4571.2011.00192.x (2011).
Google Scholar
Coyne, J. A. & Orr, H. A. Speciation (Sinauer, 2004).
Edmands, S. Between a rock and a hard place: Evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol. Ecol. 16, 463–475. https://doi.org/10.1111/j.1365-294X.2006.03148.x (2007).
Google Scholar
Armbruster, P., Bradshaw, W. E., Steiner, A. L. & Holzapfel, C. M. Evolutionary responses to environmental stress by the pitcher-plant mosquito, Wyeomyia smithii. Heredity 83, 509–519. https://doi.org/10.1038/sj.hdy.6886040 (1999).
Google Scholar
Edmands, S. Heterosis and outbreeding depression in interpopulation crosses spanning a wide range of divergence. Evolution 53, 1757–1768. https://doi.org/10.2307/2640438 (1999).
Google Scholar
Marr, A. B., Keller, L. F. & Arcese, P. Heterosis and outbreeding depression in descendants of natural immigrants to an inbred population of song sparrows (Melospiza melodia). Evolution 56, 131–142 (2002).
Google Scholar
Tymchuk, W. E., Sundstrom, L. F. & Devlin, R. H. Growth and survival trade-offs and outbreeding depression in rainbow trout (Oncorhynchus mykiss). Evolution 61, 1225–1237. https://doi.org/10.1111/j.1558-5646.2007.00102.x (2007).
Google Scholar
Friend, J. A. Dibbler (Parantechinus apicalis) Recovery Plan July 2003-June 2013 (Department of Conserv. and Land Management, 2003).
Miller, S., Bencini, R., Mills, H. & Moro, D. Food availability for the dibbler (Parantechinus apicalis) on Boullanger and Whitlock Islands, Western Australia. Wildl. Res. 30, 649–654. https://doi.org/10.1071/wr01082 (2003).
Google Scholar
Mills, H. R. & Bencini, R. New evidence for facultative male die-off in island populations of dibblers, Parantechinus apicalis. Aust. J. Zool. 48, 501–510. https://doi.org/10.1071/zo00025 (2000).
Google Scholar
Mills, H. R., Moro, D. & Spencer, P. B. S. Conservation significance of island versus mainland populations: A case study of dibblers (Parantechinus apicalis) in Western Australia. Anim. Conserv. 7, 387–395. https://doi.org/10.1017/s1367943004001568 (2004).
Google Scholar
Woolley, P. A. Reproductive pattern of captive Boullanger Island dibblers, Parantechinus apicalis (Marsupialia, Dasyuridae). Wildl. Res. 18, 157–163. https://doi.org/10.1071/wr9910157 (1991).
Google Scholar
Burbridge, A. A. & Woinarski, J. C. Z. Parantechinus apicalis. The IUCN Red List of Threatened Species 2016: e.T16138A21944584. https://www.iucnredlist.org/species/16138/21944584 (2016).
Friend, J. A. Island home: A new start for dibblers. Landscope 33, 39–42 (2017).
Moro, D. Translocation of captive-bred dibblers Parantechinus apicalis (Marsupialia: Dasyuridae) to Escape Island, Western Australia. Biol. Conserv. 111, 305–315. https://doi.org/10.1016/s0006-3207(02)00296-3 (2003).
Google Scholar
Thavornkanlapachai, R., Mills, H. R., Ottewell, K., Friend, J. A. & Kennington, W. J. Temporal variation in the genetic composition of an endangered marsupial reflects reintroduction history. Diversity https://doi.org/10.3390/d13060257 (2021).
Google Scholar
Morris, K., Page, M., Thomas, N. & Ottewell, K. A Strategic Framework for the Reconstruction and Conservation of the Vertebrate Fauna of Dirk Hartog Island 2016–2030. 26 (Department of Parks and Wildlife, 2017).
Thavornkanlapachai, R. Genetic Consequences of Genetic Mixing in Mammal Translocations in Western Australia Using Case Studies of Burrowing Bettongs and Dibblers. Doctor of Philosophy thesis, University of Western Australia (2016).
Akcakaya, H. R. & Sjogren-Gulve, P. Population viability analyses in Conserv. planning: an overview. Ecol. Bull. 48, 9–21 (2000).
Beissinger, S. R. & McCullough, D. R. Population Viability Analysis (The University of Chicago Press, 2002).
Lindenmayer, D. B., Clark, T. W., Lacy, R. C. & Thomas, V. C. Population viability analysis as a tool in wildlife conservation policy—With reference to Australia. Environ. Manag. 17, 745–758. https://doi.org/10.1007/bf02393895 (1993).
Google Scholar
Pacioni, C., Wayne, A. F. & Page, M. Guidelines for genetic management in mammal translocation programs. Biol. Conserv. 237, 105–113. https://doi.org/10.1016/j.biocon.2019.06.019 (2019).
Google Scholar
White, D. J. et al. Genetic consequences of multiple translocations of the banded hare-wallaby in Western Australia. Diversity https://doi.org/10.3390/d12120448 (2020).
Google Scholar
Dickman, C. R. & Braithwaite, R. W. Postmating mortality of males in the Dasyurid marsupials, Dasyurus and Parantechinus. J. Mammal. 73, 143–147. https://doi.org/10.2307/1381875 (1992).
Google Scholar
Lambert, C. & Mills, H. Husbandry and breeding of the dibbler Parantechinus apicalis at Perth Zoo. Int. Zoo Yearb. 40, 290–301 (2006).
Google Scholar
Mills, H. R., Bradshaw, F. J., Lambert, C., Bradshaw, S. D. & Bencini, R. Reproduction in the marsupial dibbler, Parantechinus apicalis; differences between island and mainland populations. Gen. Comp. Endocrinol. 178, 347–354. https://doi.org/10.1016/j.ygcen.2012.06.013 (2012).
Google Scholar
Fisher, D. O., Dickman, C. R., Jones, M. E. & Blomberg, S. P. Sperm competition drives the evolution of suicidal reproduction in mammals. Proc. Natl. Acad. Sci. USA 110, 17910–17914. https://doi.org/10.1073/pnas.1310691110 (2013).
Google Scholar
Stewart, A. Dibblers on the Jurien Islands: The Influence of Burrowing Seabirds and the Potential for Competition from Other Species. PhD thesis, University of Western Australia (2006).
Sunnucks, P. & Hales, D. F. Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol. Biol. Evol. 13, 510–524. https://doi.org/10.1093/oxfordJ.s.molbev.a025612 (1996).
Google Scholar
Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x (2004).
Google Scholar
Goudet, J. FSTAT (Version 1.2): A computer program to calculate F-statistics. J. Heredity 86, 485–486. https://doi.org/10.1093/oxfordJ.s.jhered.a111627 (1995).
Google Scholar
Peakall, R. & Smouse, P. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2239. https://doi.org/10.1093/bioinformatics/bts460 (2012).
Google Scholar
Peakall, R. & Smouse, P. E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x (2006).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2018).
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
Google Scholar
Earl, D. A. & Vonholdt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).
Google Scholar
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).
Google Scholar
Do, C. et al. NEESTIMATOR v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214. https://doi.org/10.1111/1755-0998.12157 (2014).
Google Scholar
Waples, R. S. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv. Genet. 7, 167–184. https://doi.org/10.1007/s10592-005-9100-y (2006).
Google Scholar
Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).
Google Scholar
Piry, S., Luikart, G. & Cornuet, J. M. BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Heredity 90, 502–503. https://doi.org/10.1093/jhered/90.4.502 (1999).
Google Scholar
Queller, D. C. & Goodnight, K. F. Estimating relatedness using genetic markers. Evolution 43, 258–275. https://doi.org/10.2307/2409206 (1989).
Google Scholar
Lacy, R. C. & Pollak, J. P. VORTEX: A Stochastic Simulation of the Extinction Process. Version 10.0 (Brookfield, Illinois, USA, 2014).
Lacy, R. C. VORTEX—A computer simulation model for population viability analysis. Wildl. Res. 20, 45–65. https://doi.org/10.1071/wr9930045 (1993).
Google Scholar
Parrott, M. L., Ward, S. J., Temple-Smith, P. D. & Selwood, L. Effects of drought on weight, survival and breeding success of agile antechinus (Antechinus agilis), dusky antechinus (A. swainsonii) and bush rats (Rattus fuscipes). Wildl. Res. 34, 437–442. https://doi.org/10.1071/wr07071 (2007).
Google Scholar
Rhind, S. G. & Bradley, J. S. The effect of drought on body size, growth and abundance of wild brush-tailed phascogales (Phascogale tapoatafa) in south-western Australia. Wildl. Res. 29, 235–245. https://doi.org/10.1071/wr01014 (2002).
Google Scholar
Bureau of Meteorology. Monthly rainfall Jurien Bay. Australian Government. http://www.bom.gov.au/jsp/ncc/cdio/weatherData/av?p_nccObsCode=139&p_display_type=dataFile&p_startYear=&p_c=&p_stn_num=009131 (2020).
McCarthy, M. A., Burgman, M. A. & Ferson, S. Sensitivity analysis for models of population viability. Biol. Conserv. 73, 93–100. https://doi.org/10.1016/0006-3207(95)00046-7 (1995).
Google Scholar
Waples, R. S. & Do, C. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: A largely untapped resource for applied conservation and evolution. Evol. Appl. 3, 244–262. https://doi.org/10.1111/j.1752-4571.2009.00104.x (2010).
Google Scholar
Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. Ongoing unraveling of a continental fauna: Decline and extinction of Australian mammals since European settlement. Proc. Natl. Acad. Sci. USA 112, 4531–4540. https://doi.org/10.1073/pnas.1417301112 (2015).
Google Scholar
Eldridge, M. D. B. et al. Unprecedented low levels of genetic variation and inbreeding depression in an island population of the black-footed rock-wallaby. Conserv. Biol. 13, 531–541. https://doi.org/10.1046/j.1523-1739.1999.98115.x (1999).
Google Scholar
Frankham, R. Do island populations have less genetic variation than mainland populations?. Heredity 78, 311–327. https://doi.org/10.1038/hdy.1997.46 (1997).
Google Scholar
Wright, S. Evoluation in Mendelian populations. Genetics 16, 0097–0159 (1931).
Google Scholar
Wang, J. L. Estimation of effective population sizes from data on genetic markers. Philos. Trans. R. Soc. B. Sci. 360, 1395–1409. https://doi.org/10.1098/rstb.2005.1682 (2005).
Google Scholar
Frankham, R., Bradshaw, C. J. A. & Brook, B. W. Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol. Conserv. 170, 56–63. https://doi.org/10.1016/j.biocon.2013.12.036 (2014).
Google Scholar
Kennington, W. J., Hevroy, T. H. & Johnson, M. S. Long-term genetic monitoring reveals contrasting changes in the genetic composition of newly established populations of the intertidal snail Bembicium vittatum. Mol. Ecol. 21, 3489–3500. https://doi.org/10.1111/j.1365-294X.2012.05636.x (2012).
Google Scholar
Olson, Z. H., Whittaker, D. G. & Rhodes, O. E. Translocation history and genetic diversity in reintroduced bighorn sheep. J. Wildl. Manag. 77, 1553–1563. https://doi.org/10.1002/jwmg.624 (2013).
Google Scholar
White, L. C., Moseby, K. E., Thomson, V. A., Donnellan, S. C. & Austin, J. J. Long-term genetic consequences of mammal reintroductions into an Australian conservation reserve. Biol. Conserv. 219, 1–11. https://doi.org/10.1016/j.biocon.2017.12.038 (2018).
Google Scholar
Di Fonzo, M. M. I., Pelletier, F., Clutton-Brock, T. H., Pemberton, J. M. & Coulson, T. The population growth consequences of variation in individual heterozygosity. PLoS ONE 6, e19667. https://doi.org/10.1371/J.pone.0019667 (2011).
Google Scholar
Foerster, K., Delhey, K., Johnsen, A., Lifjeld, J. T. & Kempenaers, B. Females increase offspring heterozygosity and fitness through extra-pair matings. Nature 425, 714–717. https://doi.org/10.1038/nature01969 (2003).
Google Scholar
Pujolar, J. M., Maes, G. E., Vancoillie, C. & Volckaert, F. A. M. Growth rate correlates to individual heterozygosity in the european eel, Anguilla anguilla L.. Evolution 59, 189–199 (2005).
Google Scholar
Wolfe, K. M., Robertson, H. & Bencini, R. The mating behaviour of the dibbler, Parantechinus apicalis, in captivity. Aust. J. Zool. 48, 541–550. https://doi.org/10.1071/zo00030 (2000).
Google Scholar
Hedrick, P. W., Robinson, J. A., Peterson, R. O. & Vucetich, J. A. Genetics and extinction and the example of Isle Royale wolves. Anim. Conserv. 22, 302–309. https://doi.org/10.1111/acv.12479 (2019).
Google Scholar
Huisman, J., Kruuk, L. E. B., Ellis, P. A., Clutton-Brock, T. & Pemberton, J. M. Inbreeding depression across the lifespan in a wild mammal population. Proc. Natl. Acad. Sci. USA 113, 3585–3590. https://doi.org/10.1073/pnas.1518046113 (2016).
Google Scholar
Nunziata, S. O. & Weisrock, D. W. Estimation of contemporary effective population size and population declines using RAD sequence data. Heredity 120, 196–207. https://doi.org/10.1038/s41437-017-0037-y (2018).
Google Scholar
Popa-Baez, A. D. et al. Genome-wide patterns of differentiation over space and time in the Queensland fruit fly. Sci. Rep. 10, 13. https://doi.org/10.1038/s41598-020-67397-5 (2020).
Google Scholar
Lacy, R. C. Importance of genetic variation to the viability of mammalian populations. J. Mammal. 78, 320–335. https://doi.org/10.2307/1382885 (1997).
Google Scholar
Lavery, T. H., Fisher, D. O., Flannery, T. F. & Leung, L. K. P. Higher extinction rates of dasyurids on Australo-Papuan continental shelf islands and the zoogeography of New Guinea mammals. J. Biogeogr. 40, 747–758. https://doi.org/10.1111/jbi.12072 (2013).
Google Scholar
Sigg, D. P. Reduced genetic diversity and significant genetic differentiation after translocation: Comparison of the remnant and translocated populations of bridled nailtail wallabies (Onychogalea fraenata). Conserv. Genet. 7, 577–589. https://doi.org/10.1007/s10592-005-9096-3 (2006).
Google Scholar
Burgman, M. A., Akcakaya, H. R. & Loew, S. S. The use of extinction models for species conservation. Biol. Conserv. 43, 9–25. https://doi.org/10.1016/0006-3207(88)90075-4 (1988).
Google Scholar
Frankham, R. Inbreeding and extinction: Island populations. Conserv. Biol. 12, 665–675. https://doi.org/10.1046/j.1523-1739.1998.96456.x (1998).
Google Scholar
Promislow, D. E. L. & Harvey, P. H. Living fast and dying young—A comparative-analysis of life-history variation among mammals. J. Zool. 220, 417–437. https://doi.org/10.1111/j.1469-7998.1990.tb04316.x (1990).
Google Scholar
CSIRO. State of the Climate 2018 https://www.csiro.au/en/Showcase/state-of-the-climate/ (2018).
Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587. https://doi.org/10.1038/s41558-018-0187-9 (2018).
Google Scholar
Morita, K. & Yokota, A. Population viability of stream-resident salmonids after habitat fragmentation: A case study with white-spotted charr (Salvelinus leucomaenis) by an individual based model. Ecol. Model. 155, 85–94. https://doi.org/10.1016/s0304-3800(02)00128-x (2002).
Google Scholar
Ottewell, K. et al. Evaluating success of translocations in maintaining genetic diversity in a threatened mammal. Biol. Conserv. 171, 209–219. https://doi.org/10.1016/j.biocon.2014.01.012 (2014).
Google Scholar
Zeoli, L. F., Sayler, R. D. & Wielgus, R. Population viability analysis for captive breeding and reintroduction of the endangered Columbia basin pygmy rabbit. Anim. Conserv. 11, 504–512. https://doi.org/10.1111/j.1469-1795.2008.00208.x (2008).
Google Scholar
Mella, V. S. A., McArthur, C., Krockenberger, M. B., Frend, R. & Crowther, M. S. Needing a drink: Rainfall and temperature drive the use of free water by a threatened arboreal folivore. PLoS ONE 14, e0216964. https://doi.org/10.1371/journal.pone.0216964 (2019).
Google Scholar
Smith, A. G. et al. Out on a limb: Habitat use of a specialist folivore, the koala, at the edge of its range in a modified semi-arid landscape. Landsc. Ecol. 28, 415–426. https://doi.org/10.1007/s10980-013-9846-4 (2013).
Google Scholar
Akesson, M. et al. Genetic rescue in a severely inbred wolf population. Mol. Ecol. 25, 4745–4756. https://doi.org/10.1111/mec.13797 (2016).
Google Scholar
Heber, S. et al. The genetic rescue of two bottlenecked South Island robin populations using translocations of inbred donors. Proc. R. Soc. B. Sci. 280, 20122228. https://doi.org/10.1098/rspb.2012.2228 (2013).
Google Scholar
Hedrick, P. W. & Fredrickson, R. Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Conserv. Genet. 11, 615–626. https://doi.org/10.1007/s10592-009-9999-5 (2010).
Google Scholar
Weeks, A. R. et al. Genetic rescue increases fitness and aids rapid recovery of an endangered marsupial population. Nat. Commun. 8, 1071. https://doi.org/10.1038/s41467-017-01182-3 (2017).
Google Scholar
Bell, D. A. et al. The exciting potential and remaining uncertainties of genetic rescue. Trends Ecol. Evol. 34, 1070–1079. https://doi.org/10.1016/j.tree.2019.06.006 (2019).
Google Scholar
Ralls, K., Sunnucks, P., Lacy, R. C. & Frankham, R. Genetic rescue: A critique of the evidence supports maximizing genetic diversity rather than minimizing the introduction of putatively harmful genetic variation. Biol. Conserv. 251, 8. https://doi.org/10.1016/j.biocon.2020.108784 (2020).
Google Scholar
Ramsey, J., Bradshaw, H. D. & Schemske, D. W. Components of reproductive isolation between the monkeyflowers Mimulus lewisii and M. cardinalis (Phrymaceae). Evolution 57, 1520–1534 (2003).
Google Scholar
Skoracka, A. Reproductive barriers between populations of the cereal rust mite Abacarus hystrix confirm their host specialization. Evol. Ecol. 22, 607–616. https://doi.org/10.1007/s10682-007-9185-5 (2008).
Google Scholar
Vines, T. H. & Schluter, D. Strong assortative mating between allopatric sticklebacks as a by-product of adaptation to different environments. Proc. R. Soc. B. Sci. 273, 911–916. https://doi.org/10.1098/rspb.2005.3387 (2006).
Google Scholar
Keighery, G. J., Alford, J. J. & Longman, V. A vegetation survey of the islands of the Turquoise Coast from Dongara to Lancelin, south-western Australia. Conserv. Sci. West. Aust. 4, 13–62 (2002).
Source: Ecology - nature.com