in

Multi-objective optimization can balance trade-offs among boreal caribou, biodiversity, and climate change objectives when conservation hotspots do not overlap

  • IPCC. Summary for policymakers in Climate Change 2021: The Physical Science Basis. Contribution of Working Group 1 to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Masson-Delmotte, V. et al.) 3–32 (Cambridge University Press, 2021).

  • Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253. https://doi.org/10.1126/sciadv.1400253 (2015).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived?. Nature 471, 51–57 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • IPBES. Global assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).

  • United Nations. What is the United Nations Framework Convention on Climate Change? https://unfccc.int/process-and-meetings/the-convention/what-is-the-united-nations-framework-convention-on-climate-change (2021).

  • United Nations. The Paris Agreement. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (2022).

  • United Nations. The Convention on Biological Diversity. https://www.cbd.int/convention/ (2021).

  • UN environment programme. Aichi Target 11, Convention on Biological Diversity https://www.cbd.int/aichi-targets/target/11 (2021).

  • Tagesson, T. et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat. Ecol. Evol. 4, 202–209 (2020).

    Article 

    Google Scholar 

  • Wells, J. V., Dawson, N., Culver, N., Reid, F. A. & Morgan Siegers, S. The state of conservation in North America’s boreal forest: issues and opportunities. Front. For. Glob. Chang. 3, 90 (2020).

    Article 

    Google Scholar 

  • Bradshaw, C. J. A. & Warkentin, I. G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Change 128, 24–30 (2015).

    ADS 
    Article 

    Google Scholar 

  • Drever, C. R. et al. Natural climate solutions for Canada. Sci. Adv. 7, eabd6034. https://doi.org/10.1126/sciadv.abd6034 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Government of Canada. Species at Risk Act (S.C. 2002, c. 29) https://laws.justice.gc.ca/eng/acts/S-15.3/ (2021).

  • SARA registry. Woodland caribou (Rangifer tarandus), boreal population: species summary. https://species-registry.canada.ca/index-en.html#/species/636-252 (2022).

  • Brandt, J. P. The extent of the North American boreal zone. Environ. Rev. 17, 101–161 (2009).

    Article 

    Google Scholar 

  • Environment and Climate Change Canada. Boreal caribou ranges – Canada https://open.canada.ca/data/en/dataset/4eb3e825-5b0f-45a3-8b8b-355188d24b71 (2016).

  • Hebblewhite, M. Billion dollar boreal woodland caribou and the biodiversity impacts of the global oil and gas industry. Biol. Cons. 206, 102–111 (2017).

    Article 

    Google Scholar 

  • Hebblewhite, M. & Fortin, D. Canada fails to protect its caribou. Science 358, 730 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Boan, J. J., Malcolm, J. R., Vanier, M. D., Euler, D. L. & Moola, F. M. From climate to caribou: how manufactured uncertainty is affecting wildlife management. Wildl. Soc. Bull. 42, 366–381 (2018).

    Article 

    Google Scholar 

  • Government of Canada. Overview of the Pan-Canadian approach to transforming species at risk conservation in Canada https://www.canada.ca/en/services/environment/wildlife-plants-species/species-risk/pan-canadian-approach.html (2020).

  • Environment and Climate Change Canada. Pan-Canadian approach to transforming species at risk conservation in Canada (Environment and Climate Change Canada, 2018).

  • Assembly of First Nations & David Suzuki Foundation. Cultural and ecological value of Boreal Woodland Caribou habitat https://davidsuzuki.org/science-learning-centre-article/cultural-ecological-value-boreal-woodland-caribou-habitat/ (2013).

  • Royal Canadian Mint. A familiar face – the 25-cent coin. https://www.mint.ca/en/discover/canadian-circulation/25-cents (2022).

  • Drever, C. R. et al. Conservation through co-occurrence: woodland caribou as a focal species for boreal biodiversity. Biol. Conserv. 232, 238–252 (2019).

    Article 

    Google Scholar 

  • Johnson, C. A., Drever, C. R., Kirby, P., Neave, E. & Martin, A. E. Protecting boreal caribou habitat can help conserve biodiversity and safeguard large quantities of soil carbon in Canada. Sci. Rep. (in review).

  • Government of Canada. Canadian Protected and Conserved Areas Database https://www.canada.ca/en/environment-climate-change/services/national-wildlife-areas/protected-conserved-areas-database.html (2022).

  • Trudeau, J. Minister of Environment and Climate Change mandate letter https://pm.gc.ca/en/mandate-letters/2021/12/16/minister-environment-and-climate-change-mandate-letter (2021).

  • Environment Canada. Scientific assessment to inform the identification of critical habitat for Woodland Caribou (Rangifer tarandus caribou), boreal population, in Canada: 2011 update (Environment Canada, 2011).

  • Environment and Climate Change Canada. Amended recovery strategy of the Woodland Caribou (Rangifer tarandus caribou), boreal population, in Canada. Species at Risk Act Recovery Strategy Series (Environment and Climate Change Canada, 2020).

  • Johnson, C. A. et al. Science to inform policy: linking population dynamics to habitat for a threatened species in Canada. J. Appl. Ecol. 57, 1314–1327 (2020).

    Article 

    Google Scholar 

  • Mansuy, N. et al. Contrasting human influences and macro-environmental factors on fire activity inside and outside protected areas of North America. Environ. Res. Lett. 14, 064007. https://doi.org/10.1088/1748-9326/ab1bc5 (2019).

    ADS 
    Article 

    Google Scholar 

  • Mitchell, M. G. E. et al. Identifying key ecosystem service providing areas to inform national-scale conservation planning. Environ. Res. Lett. 16, 014038. https://doi.org/10.1088/1748-9326/abc121 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kocsis, Á. T., Zhao, Q., Costello, M. J. & Kiessling, W. Not all biodiversity rich spots are climate refugia. Biogeosciences 18, 6567–6579 (2021).

    ADS 
    Article 

    Google Scholar 

  • Barr, S. L., Larson, B. M. H., Beechey, T. J. & Scott, D. J. Assessing climate change adaptation progress in Canada’s protected areas. Can. Geogr. 65, 152–165 (2021).

    Article 

    Google Scholar 

  • Groves, C. R. et al. Incorporating climate change into systematic conservation planning. Biodivers. Conserv. 21, 1651–1671 (2012).

    Article 

    Google Scholar 

  • Reside, A. E., Butt, N. & Adams, V. M. Adapting systematic conservation planning for climate change. Biodivers. Conserv. 27, 1–29 (2018).

    Article 

    Google Scholar 

  • Sothe, C. et al. Large soil carbon storage in terrestrial ecosystems of Canada. Global Biogeochem. Cycles 36, e2021GB007213. https://doi.org/10.1029/2021GB007213 (2022).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Beyer, H. L., Dujardin, Y., Watts, M. E. & Possingham, H. P. Solving conservation planning problems with integer linear programming. Ecol. Modell. 328, 14–22 (2016).

    Article 

    Google Scholar 

  • Hanson, J. O., Schuster, R., Strimas-Mackey, M. & Bennett, J. R. Optimality in prioritizing conservation projects. Methods Ecol. Evol. 10, 1655–1663 (2019).

    Article 

    Google Scholar 

  • Schuster, R., Hanson, J. O., Strimas-Mackey, M. & Bennett, J. R. Exact integer linear programming solvers outperform simulated annealing for solving conservation planning problems. PeerJ 8, e9258. https://doi.org/10.7717/peerj.9258 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McIntosh, E. J. et al. Absence of evidence for the conservation outcomes of systematic conservation planning around the globe: a systematic map. Environ. Evid. 7, 22. https://doi.org/10.1186/s13750-018-0134-2 (2018).

    Article 

    Google Scholar 

  • Díaz-Yáñez, O., Pukkala, T., Packalen, P., Lexer, M. J. & Peltola, H. Multi-objective forestry increases the production of ecosystem services. For. Int. J. For. Res. 94, 386–394 (2021).

    Google Scholar 

  • Coristine, L. E. et al. Informing Canada’s commitment to biodiversity conservation: a science-based framework to help guide protected areas designation through Target 1 and beyond. Facets 3, 531–562 (2018).

    Article 

    Google Scholar 

  • Carroll, C. & Ray, J. C. Maximizing the effectiveness of national commitments to protected area expansion for conserving biodiversity and ecosystem carbon under climate change. Glob. Chang. Biol. 27, 3395–3414 (2021).

    Article 

    Google Scholar 

  • Indigenous Circle of Experts. We rise together: achieving Pathway to Canada Target 1 through the creation of Indigenous Protected and Conserved Areas in the spirit and practice of reconciliation. (2018).

  • Zurba, M., Beazley, K. F., English, E. & Buchmann-Duck, J. Indigenous Protected and Conserved Areas (IPCAs), Aichi Target 11 and Canada’s Pathway to Target 1: focusing conservation on reconciliation. Land 8, 10. https://doi.org/10.3390/land8010010 (2019).

    Article 

    Google Scholar 

  • Schuster, R., Germain, R. R., Bennett, J. R., Reo, N. J. & Arcese, P. Vertebrate biodiversity on indigenous-managed lands in Australia, Brazil, and Canada equals that in protected areas. Environ. Sci. Policy 101, 1–6 (2019).

    Article 

    Google Scholar 

  • Lee, P. & Boutin, S. Persistence and developmental transition of wide seismic lines in the western Boreal Plains of Canada. J. Environ. Manage. 78, 240–250 (2006).

    Article 

    Google Scholar 

  • Ray, J. C. Defining habitat restoration for boreal caribou in the context of national recovery: a discussion paper (Wildlife Conservation Society Canada, 2014).

  • Carwardine, J. et al. Avoiding costly conservation mistakes: the importance of defining actions and costs in spatial priority settings. PLoS ONE 3, e2586. https://doi.org/10.1371/journal.pone.0002586 (2008).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • DeCesare, N. J. et al. Estimating ungulate recruitment and growth rates using age ratios. J. Wildl. Manage. 76, 144–153 (2012).

    Article 

    Google Scholar 

  • Cunningham, C. A., Thomas, C. D., Morecroft, M. D., Crick, H. Q. P. & Beale, C. M. The effectiveness of the protected area network of Great Britain. Biol. Conserv. 257, 109146. https://doi.org/10.1016/j.biocon.2021.109146 (2021).

    Article 

    Google Scholar 

  • Olds, A. D., Connolly, R. M., Pitt, K. A. & Maxwell, P. S. Habitat connectivity improves reserve performance. Conserv. Lett. 5, 56–63 (2012).

    Article 

    Google Scholar 

  • Gurd, D. B., Nudds, T. D. & Rivard, D. H. Conservation of mammals in eastern North American wildlife reserves: how small is too small? Conserv. Biol. 15, 1355–1363 (2001).

    Article 

    Google Scholar 

  • Government of Canada. Canadian Protected and Conserved Areas Database, December 2019 CPCAD data https://www.canada.ca/en/environment-climate-change/services/national-wildlife-areas/protected-conserved-areas-database.html (2019).

  • Environment Canada. Recovery strategy for the woodland caribou (Rangifer tarandus caribou), boreal population, in Canada. Species at Risk Act Recovery Strategy Series (Environment Canada, 2012).

  • R Core Team. R: A language and environment for statistical computing. Version 4.0.4 (The R Foundation, 2021).

  • Chung, N. C., Miasojedow, B., Startek, M. & Gambin, A. Jaccard/Tanimoto similarity test and estimation methods for biological presence-absence data. BMC Bioinf. 20, 644. https://doi.org/10.1186/s12859-019-3118-5 (2019).

    Article 

    Google Scholar 

  • Chung, N. C., Miasojedow, B., Startek, M. & Gambin, A. jaccard: test similarity between binary data using Jaccard/Tanimoto coefficients. R package version 0.1.0. https://cran.r-project.org/package=jaccard (2018).

  • Ralphs, T., Ladanyi, L., Guzelsoy, M. & Mahajan, A. Symphony. Zenodo https://doi.org/10.5281/zenodo.2576603/ (2019).

  • Theußl, S., Schwendinger, F. & Hornik, K. ROI: an extensible R optimization infrastructure. J. Stat. Softw. 94, 1–64 (2020).

    Article 

    Google Scholar 

  • Theussl, S. ROI.plugin.symphony: ‘SYMPHONY’ plug-in for the ‘R’ optimization interface. R package version 1.0–0 https://CRAN.R-project.org/package=ROI.plugin.symphony (2020).

  • Environment and Climate Change Canada. 2015 – Anthropogenic disturbance footprint within boreal caribou ranges across Canada – as interpreted from 2015 Landsat satellite imagery https://open.canada.ca/data/en/dataset/a71ab99c-6756-4e56-9d2e-2a63246a5e94 (2019).

  • Stralberg, D. Velocity-based macrorefugia for North American ecoregions. Zenodo https://doi.org/10.5281/zenodo.2579337 (2019).

  • Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748. https://doi.org/10.1371/journal.pone.0169748 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT engineers design surfaces that make water boil more efficiently

    Comparative efficacy of phosphorous supplements with phosphate solubilizing bacteria for optimizing wheat yield in calcareous soils