Lindenmayer, D. B., Cunningham, R. B., Donnelly, C. F. & Lesslie, R. On the use of landscape surrogates as ecological indicators in fragmented forests. For. Ecol. Manag. 159(3), 203–216. https://doi.org/10.1016/S0378-1127(01)00433-9 (2002).
Google Scholar
Hannah, L., Carr, J. L. & Lankerani, A. Human disturbance and natural habitat: a biome level analysis of a global data set. Biodivers. Conserv. 4(2), 128–155. https://doi.org/10.1007/BF00137781 (1995).
Google Scholar
Sabatini, F. M. et al. Where are europe’s last primary forests?. Divers. Distrib. 24(10), 1426–1439. https://doi.org/10.1111/ddi.12778 (2018).
Google Scholar
Mikoláš, M. et al. Primary forest distribution and representation in a central european landscape: results of a large-scale field-based census. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2019.117466 (2019).
Google Scholar
Hilmers, T. et al. Biodiversity along temperate forest succession. J. Appl. Ecol. 55(6), 2756–2766. https://doi.org/10.1111/1365-2664.13238 (2018).
Google Scholar
Nagel, T. A., Svoboda, M. & Diaci, J. Regeneration patterns after intermediate wind disturbance in an old-growth fagus-abies forest in southeastern Slovenia. For. Ecol. Manag. 226(1–3), 268–278. https://doi.org/10.1016/j.foreco.2006.01.039 (2006).
Google Scholar
Thorn, S. et al. Estimating retention benchmarks for salvage logging to protect biodiversity. Nat. Commun. 11, 4762. https://doi.org/10.1038/s41467-020-18612-4 (2020).
Google Scholar
Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE https://doi.org/10.1371/journal.pone.0185809 (2017).
Google Scholar
Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).
Google Scholar
Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674. https://doi.org/10.1038/s41586-019-1684-3 (2019).
Google Scholar
Seibold, S. et al. Experimental studies of dead-wood biodiversity — a review identifying global gaps in knowledge. Biol. Conserv. 191, 139–149. https://doi.org/10.1016/j.biocon.2015.06.006 (2015).
Google Scholar
Paillet, Y. et al. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv. Biol. 24(1), 101–112. https://doi.org/10.1111/j.1523-1739.2009.01399.x (2010).
Google Scholar
Cálix, M., Alexander, K. N. A., Nieto, A., Dodelin, B. et al. European Red List of Saproxylic Beetles (IUCN. 19 s, Brussels, Belgium, 2018). Available at: http://www.iucnredlist.org/initiatives/europe/publications
Schiegg, K. Effects of dead wood volume and connectivity on saproxylic insect species diversity. Écoscience 7(3), 290–298. https://doi.org/10.1080/11956860.2000.11682598 (2016).
Google Scholar
Müller, J. et al. Implications from large-scale spatial diversity patterns of saproxylic beetles for the conservation of european beech forests. Insect Conserv. Divers. 6(2), 162–169. https://doi.org/10.1111/j.1752-4598.2012.00200.x (2013).
Google Scholar
Schneider, A. et al. Animal diversity in beech forests – an analysis of 30 years of intense faunistic research in hessian strict forest reserves. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2021.119564 (2021).
Google Scholar
Brunet, J., Fritz, Ö. & Richnau, G. Biodiversity in European beech forests—a review with recommendations for sustainable forest management. Ecol. Bull. 53, 77–94 (2010).
Bilek, L., Remes, J. & Zahradnik, D. Managed vs. unmanaged. Structure of beech forest stands (Fagus sylvatica L.) after 50 years of development central Bohemia. For. Syst. 20(1), 122–138. https://doi.org/10.5424/fs/2011201-10243 (2011).
Google Scholar
Müller, J., Bußler, H. & Kneib, T. Saproxylic beetle assemblages related to silvicultural management intensity and stand structures in a beech forest in southern Germany. J. Insect Conserv. 12(2), 107–124. https://doi.org/10.1007/s10841-006-9065-2 (2008).
Google Scholar
Doerfler, I., Müller, J., Gossner, M. M., Hofner, B. & Weisser, W. W. Success of a deadwood enrichment strategy in production forests depends on stand type and management intensity. For. Ecol. Manag. 400, 607–620. https://doi.org/10.1016/j.foreco.2017.06.013 (2017).
Google Scholar
Doerfler, I., Gossner, M. M., Müller, J., Seibold, S. & Weisser, W. W. Deadwood enrichment combining integrative and segregative conservation elements enhances biodiversity of multiple taxa in managed forests. Biol. Conserv. 228, 70–78. https://doi.org/10.1016/j.biocon.2018.10.013 (2018).
Google Scholar
Doerfler, I. et al. Restoration-oriented forest management affects community assembly patterns of deadwood-dependent organisms. J. Appl. Ecol. 57(12), 2429–2440. https://doi.org/10.1111/1365-2664.13741 (2020).
Google Scholar
Zumr, V., Remeš, J. & Pulkrab, K. How to increase biodiversity of saproxylic beetles in commercial stands through integrated forest management in central Europe. Forests https://doi.org/10.3390/f12060814 (2021).
Google Scholar
Svoboda, M., Fraver, S., Janda, P., Bače, R. & Zenáhlíková, J. Natural development and regeneration of a central european montane spruce forest. For. Ecol. Manag. 260(5), 707–714. https://doi.org/10.1016/j.foreco.2010.05.027 (2010).
Google Scholar
Šebková, B. et al. Spatial and volume patterns of an unmanaged submontane mixed forest in central Europe: 160 years of spontaneous dynamics. For. Ecol. Manag. 262(5), 873–885. https://doi.org/10.1016/j.foreco.2011.05.028 (2011).
Google Scholar
Bílek, L. et al. Gap regeneration in near-natural european beech forest stands in central bohemia – the role of heterogeneity and micro-habitat factors. Dendrobiology https://doi.org/10.12657/denbio.071.006 (2013).
Google Scholar
Čada, V. et al. Frequent severe natural disturbances and non-equilibrium landscape dynamics shaped the mountain spruce forest in central Europe. For. Ecol. Manag. 363, 169–178. https://doi.org/10.1016/j.foreco.2015.12.023 (2016).
Google Scholar
Thorn, S. et al. Impacts of salvage logging on biodiversity: a meta-analysis. J. Appl. Ecol. 55(1), 279–289. https://doi.org/10.1111/1365-2664.12945 (2018).
Google Scholar
Schelhaas, M.-J., Nabuurs, G.-J. & Schuck, A. Natural disturbances in the European forests in the 19th and 20th centuries. Glob. Change Biol. 9(11), 1620–1633. https://doi.org/10.1046/j.1365-2486.2003.00684.x (2003).
Google Scholar
Vera, F. W. M. (ed.) Grazing Ecology and Forest History (CABI, 2000). https://doi.org/10.1079/9780851994420.0000.
Google Scholar
Vera, F. W. M. The dynamic European forest. Arboric. J. 26(3), 179–211. https://doi.org/10.1080/03071375.2002.9747335 (2012).
Google Scholar
Swanson, M. E. et al. The forgotten stage of forest succession: early-successional ecosystems on forest sites. Front. Ecol. Environ. 9(2), 117–125. https://doi.org/10.1890/090157 (2011).
Google Scholar
Lachat, T. et al. Influence of canopy gaps on saproxylic beetles in primeval beech forests: a case study from the Uholka-Shyrokyi Luh forest, Ukraine. Insect Conserv. Divers. 9(6), 559–573. https://doi.org/10.1111/icad.12188 (2016).
Google Scholar
Gossner, M. M. et al. Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conserv. Biol. 27(3), 605–614. https://doi.org/10.1111/cobi.12023 (2013).
Google Scholar
Procházka, J. & Schlaghamerský, J. Does dead wood volume affect saproxylic beetles in montane beech-fir forests of central Europe?. J. Insect Conserv. 23(1), 157–173. https://doi.org/10.1007/s10841-019-00130-4 (2019).
Google Scholar
Winter, S. & Möller, G. C. Microhabitats in lowland beech forests as monitoring tool for nature conservation. For. Ecol. Manag. 255(3–4), 1251–1261. https://doi.org/10.1016/j.foreco.2007.10.029 (2008).
Google Scholar
Bouget, C., Larrieu, L. & Brin, A. Key features for saproxylic beetle diversity derived from rapid habitat assessment in temperate forests. Ecol. Ind. 36, 656–664. https://doi.org/10.1016/j.ecolind.2013.09.031 (2014).
Google Scholar
Sebek, P. et al. Open-grown trees as key habitats for arthropods in temperate woodlands: the diversity, composition, and conservation value of associated communities. For. Ecol. Manag. 380, 172–181. https://doi.org/10.1016/j.foreco.2016.08.052 (2016).
Google Scholar
Kozel, P. et al. Connectivity and succession of open structures as a key to sustaining light-demanding biodiversity in deciduous forests. J. Appl. Ecol. 58(12), 2951–2961. https://doi.org/10.1111/1365-2664.14019 (2021).
Google Scholar
Nagel, T. A., Svoboda, M. & Kobal, M. Disturbance, life history traits, and dynamics in an old-growth forest landscape of southeastern Europe. Ecol. Appl. 24(4), 663–679. https://doi.org/10.1890/13-0632.1 (2014).
Google Scholar
Christensen, M. et al. The forest cycle of Suserup Skov – revisited and revised. Ecol. Bull. 52, 33–42 (2007).
Trotsiuk, V., Hobi, M. L. & Commarmot, B. Age structure and disturbance dynamics of the relic virgin beech forest Uholka (Ukrainian Carpathians). For. Ecol. Manag. 265, 181–190. https://doi.org/10.1016/j.foreco.2011.10.042 (2012).
Google Scholar
Wermelinger, B., Duelli, P. & Obrist, M. K. Dynamics of saproxylic beetles (Coleoptera) in windthrow areas in alpine spruce forests. For. Snow Landsc. Res. 77, 133–148 (2002).
Wermelinger, B. et al. Impact of windthrow and salvage-logging on taxonomic and functional diversity of forest arthropods. For. Ecol. Manag. 391, 9–18. https://doi.org/10.1016/j.foreco.2017.01.033 (2017).
Google Scholar
Meyer, P., Schmidt, M., Feldmann, E., Willig, J. & Larkin, R. Long-term development of species richness in a central European beech (Fagus Sylvatica) forest affected by windthrow—support for the intermediate disturbance hypothesis?. Ecol. Evol. 11(18), 12801–12815. https://doi.org/10.1002/ece3.8028 (2021).
Google Scholar
Korpeľ, S. Die Urwälder der Westkarpaten (Gustav Fischer, Stuttgart, 1995) (in German).
Emborg, J., Christensen, M. & Heilmann-Clausen, J. The structural dynamics of Suserup Skov, a near natural temperate deciduous forest in Denmark. For. Ecol. Manag. 126, 173–189 (2000).
Google Scholar
Peňa, J., Remeš, J. & Bílek, L. Dynamics of natural regeneration of even-aged beech (Fagus sylvatica L.) stands at different shelterwood densities. J. For. Sci. 56(12), 580–588 (2010).
Google Scholar
Bílek, L., Peňa, J. F. B., Remeš, J. (2013b). National Nature Reserve Voděradské Bučiny 30 Years of Forestry Research Folia Forestalia Bohemica edn, Vol. 86 (Lesnická práce, 2013).
Ruchin, A. B. & Egorov, L. V. Vertical stratification of beetles in deciduous forest communities in the centre of European Russia. Diversity 13, 508. https://doi.org/10.3390/d13110508 (2021).
Google Scholar
Parmain, G. et al. Can rove beetles (Staphylinidae) be excluded in studies focusing on saproxylic beetles in central European beech forests?. Bull. Entomol. Res. 105(1), 101–109. https://doi.org/10.1017/S0007485314000741 (2015).
Google Scholar
Schmidl, J. & Bußler, H. Ökologische gilden xylobionter Käfer Deutschlands. Nat. Landsch. 36, 202–218 (2004).
Seibold, S. et al. Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe. Conserv. Biol. 29(2), 382–390. https://doi.org/10.1111/cobi.12427 (2015).
Google Scholar
Hejda, R., Farkač, J. & Chobot, K. Red List of Threatened Species of the Czech Republic Vol. 36, 1–612 (Agentura ochrany přírody a krajiny České republiky, Praha, 2017).
Lepš, J., Šmilauer, P. Biostatistika (Nakladatelství Jihočeské univerzity v Českých Budějovicích, 2016)
Chao, A. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984).
Chao, A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43, 783–791 (1987).
Google Scholar
Colwell, R. K. EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples. Version 9. User’s Guide and application published at: http://purl.oclc.org/estimates (2013).
Seibold, S. et al. Experiments with dead wood reveal the importance of dead branches in the canopy for saproxylic beetle conservation. For. Ecol. Manag. 409, 564–570. https://doi.org/10.1016/j.foreco.2017.11.052 (2018).
Google Scholar
Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67. https://doi.org/10.1890/13-0133.1 (2014).
Google Scholar
Chao, A., Ma, K. H., Hsieh, T. C. iNEXT (iNterpolation and EXTrapolation)Online: Software for Interpolation and Extrapolation of Species Diversity. ProgramandUser’s Guide published at http://chao.stat.nthu.edu.tw/wordpress/software_download/ (2016).
Schenker, N. & Gentleman, J. F. On judging the significance of differences by examining the overlap between confidence intervals. Am. Stat. 55, 182–186 (2001).
Google Scholar
Horak, J. et al. Biodiversity of most dead wood-dependent organisms in thermophilic temperate oak woodlands thrives on diversity of open landscape structures. For. Ecol. Manag. 315, 80–85. https://doi.org/10.1016/j.foreco.2013.12.018 (2014).
Google Scholar
Lepš, J. & Šmilauer, P. Multivariate Analysis of Ecological Data Using Canoco (Cambridge University Press, Cambridge, 2010). https://doi.org/10.1017/CBO9780511615146.
Google Scholar
Šmilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data Using Canoco 5 2nd edn. (New York, 2014).
Google Scholar
Parisi, F. et al. Spatial patterns of saproxylic beetles in a relic silver fir forest (Central Italy), relationships with forest structure and biodiversity indicators. For. Ecol. Manag. 381, 217–234. https://doi.org/10.1016/j.foreco.2016.09.041 (2016).
Google Scholar
Siitonen, J. Decaying wood and saproxylic coleoptera in two old spruce forests: a comparison based on two sampling methods. Ann. Zool. Fenn. 31, 89–95 (1994).
Alinvi, O., Ball, J. P., Danell, K., Hjältén, J. & Pettersson, R. B. Sampling saproxylic beetle assemblages in dead wood logs: comparing window and eclector traps to traditional bark sieving and a refinement. J. Insect Conserv. 11(2), 99–112. https://doi.org/10.1007/s10841-006-9012-2 (2007).
Google Scholar
Økland, B. A comparison of three methods of trapping saproxylic beetles. Eur. J. Entomol. 93, 195–209 (1996).
Quinto, J., Marcos-García, M. D. L. Á., Brustel, H., Galante, E. & Micó, E. Effectiveness of three sampling methods to survey saproxylic beetle assemblages in mediterranean Woodland. J. Insect Conserv. 17(4), 765–776. https://doi.org/10.1007/s10841-013-9559-7 (2013).
Google Scholar
Müller, J. et al. Increasing temperature may compensate for lower amounts of dead wood in driving richness of saproxylic beetles. Ecography 38(5), 499–509. https://doi.org/10.1111/ecog.00908 (2015).
Google Scholar
Schiegg, K. Are there saproxylic beetle species characteristic of high dead wood connectivity?. Ecography 23, 579–587 (2000).
Google Scholar
Bouget, C., Larrieu, L., Nusillard, B. & Parmain, G. In search of the best local habitat drivers for saproxylic beetle diversity in temperate deciduous forests. Biodivers. Conserv. 22(9), 2111–2130. https://doi.org/10.1007/s10531-013-0531-3 (2013).
Google Scholar
Brunet, J. & Isacsson, G. Restoration of beech forest for saproxylic beetles—effects of habitat fragmentation and substrate density on species diversity and distribution. Biodivers. Conserv. 18(9), 2387–2404. https://doi.org/10.1007/s10531-009-9595-5 (2009).
Google Scholar
Eckelt, A. et al. “Primeval forest relict beetles” of central Europe: a set of 168 umbrella species for the protection of primeval forest remnants. J. Insect Conserv. 22(1), 15–28. https://doi.org/10.1007/s10841-017-0028-6 (2018).
Google Scholar
Speight, M. C. D. (1989). Saproxylic Invertebrates and Their Conservation. Saproxylic Invertebrates and Their Conservation, Vol. 42, Nature and Environmental Series, Strasbourg, 81.
Gustafsson, L. et al. Research on retention forestry in northern Europe. Ecol. Process. https://doi.org/10.1186/s13717-019-0208-2 (2020).
Google Scholar
Zumr, V. & Remeš, J. Saproxylic beetles as an indicator of forest biodiversity and the influence of forest management on their crucial life attributes: review. Rep. For. Res. 65, 242–257 (2020).
Bouget, C. & Duelli, P. The effects of windthrow on forest insect communities: a literature review. Biol. Cons. 118(3), 281–299. https://doi.org/10.1016/j.biocon.2003.09.009 (2004).
Google Scholar
Gran, O. & Götmark, F. Long-term experimental management in Swedish mixed oak-rich forests has a positive effect on saproxylic beetles after 10 years. Biodivers. Conserv. 28, 1451–1472. https://doi.org/10.1007/s10531-019-01736-5 (2019).
Google Scholar
Fahrig, L. & Storch, D. Why do several small patches hold more species than few large patches?. Glob. Ecol. Biogeogr. 29(4), 615–628. https://doi.org/10.1111/geb.13059 (2020).
Google Scholar
Müller, J., Engel, H. & Blaschke, M. Assemblages of wood-inhabiting fungi related to silvicultural management intensity in beech forests in southern Germany. Eur. J. For. Res. 126(4), 513–527. https://doi.org/10.1007/s10342-007-0173-7 (2007).
Google Scholar
Friess, N. et al. Arthropod communities in fungal fruitbodies are weakly structured by climate and biogeography across European beech forests. Divers. Distrib. 25(5), 783–796. https://doi.org/10.1111/ddi.12882 (2019).
Google Scholar
Brin, A., Brustel, H. & Jactel, H. Species variables or environmental variables as indicators of forest biodiversity: a case study using saproxylic beetles in maritime pine plantations. Ann. For. Sci. https://doi.org/10.1051/forest/2009009 (2009).
Google Scholar
Müller, J. & Bütler, R. A review of habitat thresholds for dead wood: a baseline for management recommendations in european forests. Eur. J. For. Res. 129(6), 981–992. https://doi.org/10.1007/s10342-010-0400-5 (2010).
Google Scholar
Alencar, J. B. R., Fonseca, C. R. V., Marra, D. M. & Baccaro, F. B. Windthrows promote higher diversity of saproxylic beetles (Coleoptera: Passalidae) in a central Amazon forest. Insect Conserv. Divers. https://doi.org/10.1111/icad.12523 (2021).
Google Scholar
Audisio, P. et al. Preliminary re-examination of genus-level taxonomy of the pollen beetle subfamily Meligethinae (Coleoptera: Nitidulidae). Acta Entomol. Musei Natl. Pragae 49(2), 341–504 (2009).
Burakowski, B., Mroczkowski, M., Stefańska, J. Chrząszcze – Coleoptera. Ryjkowce – Curculionidae, Część 1. Katalog Fauny Polski Vol. XXIII, no, 19 Warszawa.
Laibner, S. Elateridae of the Czech and Slovak Republics (Kabourek, Zlín, 2000).
Frank, T. & Reichhart, B. Staphylinidae and Carabidae overwintering in wheat and sown wildflower areas of different age. Bull. Entomol. Res. 94(3), 209–217. https://doi.org/10.1079/BER2004301 (2004).
Google Scholar
Herrmann, S., Kahl, T. & Bauhus, J. Decomposition dynamics of coarse woody debris of three important central European tree species. For. Ecosyst. https://doi.org/10.1186/s40663-015-0052-5 (2015).
Google Scholar
Hararuk, O., Kurz, W. A. & Didion, M. Dynamics of dead wood decay in swiss forests. For. Ecosyst. https://doi.org/10.1186/s40663-020-00248-x (2020).
Google Scholar
Jonsell, M., Weslien, J. & Ehnström, B. Substrate requirements of red-listed saproxylic invertebrates in Sweden. Biodivers. Conserv. 7(6), 749–764. https://doi.org/10.1023/A:1008888319031 (1998).
Google Scholar
Bobiec, A. (ed.) The After Life of a Tree 252 (Warsawa, WWF Poland, 2005).
Gossner, M. M. et al. Deadwood enrichment in European forests – which tree species should be used to promote saproxylic beetle diversity?. Biol. Cons. 201, 92–102. https://doi.org/10.1016/j.biocon.2016.06.032 (2016).
Google Scholar
Vogel, S. et al. Optimizing enrichment of deadwood for biodiversity by varying sun exposure and tree species: an experimental approach. J. Appl. Ecol. 57(10), 2075–2085. https://doi.org/10.1111/1365-2664.13648 (2020).
Google Scholar
Gough, L. A. et al. Specialists in ancient trees are more affected by climate than generalists. Ecol. Evol. 5(23), 5632–5641. https://doi.org/10.1002/ece3.1799 (2015).
Google Scholar
Koch Widerberg, M., Ranius, T., Drobyshev, I., Nilsson, U. & Lindbladh, M. Increased openness around retained oaks increases species richness of saproxylic beetles. Biodivers. Conserv. 21(12), 3035–3059. https://doi.org/10.1007/s10531-012-0353-8 (2012).
Google Scholar
Horák, J., Pavlíček, J., Kout, J. & Halda, J. P. Winners and losers in the wilderness: response of biodiversity to the abandonment of ancient forest pastures. Biodivers. Conserv. 27(11), 3019–3029. https://doi.org/10.1007/s10531-018-1585-z (2018).
Google Scholar
Vandekerkhove, K. et al. Saproxylic beetles in non-intervention and coppice-with-standards restoration management in meerdaal forest (Belgium): an exploratory analysis. IFor. Biogeosci. For. 9(4), 536–545. https://doi.org/10.3832/ifor1841-009 (2016).
Google Scholar
Lachat, T. et al. Saproxylic beetles as indicator species for dead-wood amount and temperature in European beech forests. Ecol. Ind. 23, 323–331. https://doi.org/10.1016/j.ecolind.2012.04.013 (2012).
Google Scholar
Müller, J. et al. Primary determinants of communities in deadwood vary among taxa but are regionally consistent. Oikos 129(10), 1579–1588. https://doi.org/10.1111/oik.07335 (2020).
Google Scholar
Černecká, Ľ, Mihál, I., Gajdoš, P. & Jarčuška, B. The effect of canopy openness of European beech (Fagus Sylvatica) forests on ground-dwelling spider communities. Insect Conserv. Divers. 13(3), 250–261. https://doi.org/10.1111/icad.12380 (2020).
Google Scholar
Spitzer, L. et al. Does closure of traditionally managed open woodlands threaten epigeic invertebrates? Effects of coppicing and high deer densities. Biol. Cons. 141(3), 827–837. https://doi.org/10.1016/j.biocon.2008.01.005 (2008).
Google Scholar
Podrázský, V., Remeš, J. & Farkač, J. Složení společenstev střevlíkovitých brouků (Coleoptera: Carabidae) v lesních porostech s různou druhovou strukturou a systémem hospodaření. Zpr. Lesn. Výzk. 55, 10–15 (2010).
Welti, E. A. R. et al. Temperature drives variation in flying insect biomass across a german malaise trap network. Insect Conserv. Divers. https://doi.org/10.1111/icad.12555 (2021).
Google Scholar
Brang, P. et al. Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry 87(4), 492–503. https://doi.org/10.1093/forestry/cpu018 (2014).
Google Scholar
Schall, P. et al. The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests. J. Appl. Ecol. 55(1), 267–278. https://doi.org/10.1111/1365-2664.12950 (2018).
Google Scholar
Leidinger, J. et al. Shifting tree species composition affects biodiversity of multiple taxa in central European forests. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2021.119552 (2021).
Google Scholar
Christensen, M. et al. Dead wood in European beech (Fagus Sylvatica) forest reserves. For. Ecol. Manag. 210(1–3), 267–282. https://doi.org/10.1016/j.foreco.2005.02.032 (2005).
Google Scholar
Plieninger, T. et al. Wood-pastures of Europe: geographic coverage, social-ecological values, conservation management, and policy implications. Biol. Cons. 190, 70–79. https://doi.org/10.1016/j.biocon.2015.05.014 (2015).
Google Scholar
Weiss, M. et al. The effect of coppicing on insect biodiversity. Small-scale mosaics of successional stages drive community turnover. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2020.118774 (2021).
Google Scholar
Source: Ecology - nature.com