in

Comparative efficacy of phosphorous supplements with phosphate solubilizing bacteria for optimizing wheat yield in calcareous soils

  • United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development (United Nations, 2015).

    Google Scholar 

  • Salimpour, S., Khavazi, K., Nadian, H., Besharati, H. & Miransari, M. Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Plant Biol. 6, 629–642 (2010).

    Google Scholar 

  • Ezawa, T., Smith, S. E. & Smith, F. A. P metabolism and transport in AM fungi. Plant Soil 244, 221–230 (2002).

    CAS 
    Article 

    Google Scholar 

  • Halajnia, A., Haghnia, G. H., Fotovat, A. & Khorasani, R. Phosphorus fractions in calcareous soils amended with P fertilizer and cattle manure. Geoderma 150, 209–213 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Adnan, M. et al. Coupling phosphate-solubilizing bacteria with phosphorus supplements improve maize phosphorus acquisition and growth under lime induced salinity stress. Plants 9, 900 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • Khan, A. A., Jilani, G., Akhtar, M. S., Naqvi, S. M. S. & Rasheed, M. Phosphorus solubilizing bacteria, occurrence, mechanisms and their role in crop production. J. Agric. Biol. Sci. 1, 48–58 (2009).

    Google Scholar 

  • Torrent, J., Barron, V. & Schwertmann, U. Phosphate adsorption and desorption by goethites differing in crystal morphology. Soil Sci. Soc. Am. J. 54, 1007–1012 (1990).

    ADS 
    Article 

    Google Scholar 

  • Rehim, A. Band-application of phosphorus with farm manure improves phosphorus use efficiency, productivity, and net returns of wheat on sandy clay loam soil. Turk. J. Agric. For. 40, 319–326 (2016).

    CAS 
    Article 

    Google Scholar 

  • Bieleski, R. L. Phosphate pools, phosphate transport and phosphate availability. Annu. Rev. Plant Physiol. 24, 225–252 (1973).

    CAS 
    Article 

    Google Scholar 

  • Goldstein, A. H. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biol. Agric. Hortic. 12, 185–193 (1995).

    Article 

    Google Scholar 

  • Lopez-Bucio, J., Vega, O. M., Guevara-Garcıa, A. & Herrera-Estrella, L. Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nat. Biotechnol. 18, 450–453 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sato, S., Solomon, D., Hyl, C., Ketterings, Q. M. & Lehmann, J. Phosphorus speciation in manure and manure-amended soils using XANES spectroscopy. Environ. Sci. Technol. 39, 7485–74919 (2000).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Brady, N. C., Weil, R. R. & Weil, R. R. The Nature and Properties of Soils Vol. 13, 662–710 (Prentice Hall, 2008).

    Google Scholar 

  • Adnan, M. et al. Coupling phosphate solubilizing bacteria with Phosphorus supplements improve maize phosphorus acquisition and growth under lime induced salinity stress. Plants 9, 900 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • Caravaca, F., Alguacil, M. M., Azcon, R., Diaz, G. & Roldan, A. Comparing the effectiveness of mycorrhizal inoculum and amendment with sugar beet, rock phosphate and Aspergillus niger to enhance field performance of the leguminous shrub Dorycnium pentaphyllum L.. Appl. Soil Ecol. 25, 169–180 (2004).

    Article 

    Google Scholar 

  • Zaidi, A., Khan, M., Ahemad, M. S., Oves, M. & Wani, P. A. Recent advances in plant growth promotion by phosphate-solubilizing microbes. In Microbial Strategies for Crop Improvement (eds Khan, M. S. et al.) 23–50 (Springer, 2009).

    Chapter 

    Google Scholar 

  • Illmer, P., Barbato, A. & Schinner, F. Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganism. Soil Biol. Biochem. 27, 265–270 (1995).

    CAS 
    Article 

    Google Scholar 

  • Ryan, P. R., Delhaize, E. & Jones, D. L. Function and mechanism of organic anion exudation from plant roots. Annu. Rev. Plant Biol. 52, 527–560 (2001).

    CAS 
    Article 

    Google Scholar 

  • Chen, Y. P. et al. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 34, 33–41 (2006).

    Article 

    Google Scholar 

  • Adnan, M. et al. Integration of poultry manure and phosphate solubilizing bacteria improved availability of Ca bound P in calcareous soils. 3 Biotech 9, 368 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • He, Z. & Zhu, J. Microbial utilization and transformation of phosphate adsorbed by variable charged minerals. Soil Biol. Biochem. 30, 917–923 (1988).

    Article 

    Google Scholar 

  • Kucey, R. M. N. Effect of Penicillium bilajion the solubility and uptake of P and micronutrients from soil by wheat. Can. J. Soil Sci. 68, 261–270 (1988).

    CAS 
    Article 

    Google Scholar 

  • Bünemann, E. K., Bossio, D. A., Smithson, P. C., Frossard, E. & Oberson, A. Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biol. Biochem. 36, 889–901 (2004).

    Article 
    CAS 

    Google Scholar 

  • McGill, W. B. & Cole, C. V. Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26, 267–268 (1981).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Chaiharn, M. & Lumyong, S. Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Curr. Microbiol. 62, 173–181 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kucey, R. M. N., Janzen, H. H. & Legett, M. E. Microbially mediated increases in plant-available phosphorus. Adv. Agron. 42, 198–228 (1989).

    Google Scholar 

  • Rodriguez, H. & Fraga, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17, 319–339 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Xiao, Y., Wang, X., Chen, W. & Huang, Q. Isolation and identification of three potassium-solubilizing bacteria from rape rhizospheric soil and their effects on ryegrass. Geomicrobiol. J. 34, 873–880 (2017).

    CAS 
    Article 

    Google Scholar 

  • Sugihara, S., Funakawa, S., Kilasara, M. & Kosaki, T. Dynamics of microbial biomass nitrogen in relation to plant nitrogen uptake during the crop growth period in a dry tropical cropland in Tanzania. Soil Sci. Plant Nutr. 56, 105–114 (2010).

    CAS 
    Article 

    Google Scholar 

  • Jalili, F. et al. Isolation and characterization of ACC deaminase producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J. Plant Physiol. 166, 667–674 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tiwari, V. N., Lehri, L. K. & Pathak, A. N. Effect of inoculating crops with phospho-microbes. Exp. Agric. 25, 47–50 (1989).

    Article 

    Google Scholar 

  • Pal, S. S. Interaction of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil 213, 221–230 (1999).

    MathSciNet 
    Article 

    Google Scholar 

  • Afzal, A., Ashraf, M., Asad, S. A. & Faroog, M. Effect of phosphate solubilizing microorganism on phosphorus uptake, yield and yield traits of wheat (Triticum aestivum L.) in rainfed area. Int. J. Agric. Biol. 7, 207–209 (2005).

    Google Scholar 

  • Bolan, N. S., Naidu, R., Mahimairajaand, S. & Baskaran, S. Influence of low-molecular-weight organic acids on the solubilization of phosphates. Biol. Fertil. Soils 18, 311–319 (1994).

    CAS 
    Article 

    Google Scholar 

  • Mihoub, A., Amin, A. E. E. A. Z., Motaghian, H. R., Saeed, M. F. & Naeem, A. Citric acid (CA)–modified biochar improved available phosphorus concentration and its half-life in a P-fertilized calcareous sandy soil. J. Soil Sci. Plant Nutr. 22(1), 465–474 (2022).

    CAS 
    Article 

    Google Scholar 

  • Adnan, M., Shah, Z., Sharif, M. & Rahman, H. Liming induces carbon dioxide (CO2) emission in PSB inoculated alkaline soil supplemented with different phosphorus sources. Environ. Sci. Pollut. Res. 25(10), 9501–9509 (2018).

    CAS 
    Article 

    Google Scholar 

  • Amin, A. E. E. A. Z. & Mihoub, A. Effect of sulfur-enriched biochar in combination with sulfur-oxidizing bacterium (Thiobacillus spp.) on release and distribution of phosphorus in high calcareous p-fixing soils. J. Soil Sci. Plant Nutr. 21(3), 2041–2047 (2021).

    CAS 
    Article 

    Google Scholar 

  • Tawaraya, K., Hirose, R. & Wagatsuma, T. Inoculation of arbuscularmycorrhizal fungi can substantially reduce phosphate fertilizer application to Alliumfis-tulosum L. and achieve marketable yield underfield condition. Biol. Fertil. Soils 48, 839–843 (2012).

    Article 

    Google Scholar 

  • Islam, M. T. & Hossain, M. M. Plant probiotics in phosphorus nutrition in crops, with special reference to rice. In Bacteria in Agrobiology, Plant Probiotics (ed. Maheshwari, D. K.) 325–363 (Springer, 2012).

    Chapter 

    Google Scholar 

  • Amruthesh, K. N., Raj, S. N., Kiran, B., Shetty, H. S. & Reddy, M. S. Growth promotion by plant growth-promoting rhizobacteria in some economically important crop plants. In Sixth International PGPR Workshop, 5–10 October, Calicut, India, 97–103 (2003).

  • Kumar, S. et al. Impacts of nitrogen rate and landscape position on soils and switchgrass root growth parameters. Agron. J. 111, 1046–1059 (2019).

    CAS 
    Article 

    Google Scholar 

  • Mihoub, A. & Boukhalfa-Deraoui, N. Performance of different phosphorus fertilizer types on wheat grown in calcareous sandy soil of El-Menia, Southern Algeria. Asian J. Crop Sci. 6, 383–391 (2014).

    Article 

    Google Scholar 

  • Piccini, D. & Azcon, R. Effect of phosphate solubilizing bacteria and vesicular-arbuscular mycorrhizal fungi on the utilization of Bayovar rock phosphate by alfalfa plants using a sand-vermiculite medium. Plant Soil 50, 45–50 (1987).

    Article 

    Google Scholar 

  • Dwivedi, B. S., Singh, V. K. & Dwivedi, V. Application of phosphate rock, with or without Aspergillus awamori inoculation, to meet phosphorus demands of rice–wheat systems in the Indo Gangetic plains of India. Aus. J. Exp. Agric. 44, 1041–1050 (2004).

    CAS 
    Article 

    Google Scholar 

  • Saad, O. A. O. & Hammad, A. M. M. Fertilizing wheat plants with rock phosphate combined with phosphate dissolving bacteria and V.A mycorrhiza as alternate for ca–superphosphate. Ann. Agric. Sci. Cairo 43, 445–460 (1998).

    Google Scholar 

  • Chabot, R. & Antoun, H. Growth promotion of maize and lettuce by phosphate solubilizing Rhizobium leguminosarum. Plant Soil. 184, 311–321 (1996).

    CAS 
    Article 

    Google Scholar 

  • Kundu, B. S. & Gaur, A. C. Rice response to inoculation with N2 fixing and P solubilizing microorganisms. Plant Soil. 79, 227–234 (1984).

    CAS 
    Article 

    Google Scholar 

  • Sharma, G. D., Thakur, R., Raj, S., Kauraw, D. L. & Kulhare, P. S. Impact of integrated nutrient management on yield, nutrient uptake, protein content of wheat (Triticum aestivum) and soil fertility in a typic Haplustert. Bioscan 8, 1159–1164 (2013).

    CAS 

    Google Scholar 

  • Afzal, A. & Asghari, B. Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). Int. J. Agric. Biol. 10, 85–88 (2008).

    CAS 

    Google Scholar 

  • Jalili, G. et al. Enhancing crop growth, nutrients availability, economics and beneficial rhizosphere micro flora through organic and bio fertilizers. Ann. Microbiol. 57(2), 177–183 (2007).

    Article 

    Google Scholar 

  • Sharma, S. N. & Prasad, R. Yield and P uptake by rice and wheat grown in a sequence as influenced by phosphate fertilization with diammonium phosphate and Mussoorie rock phosphate with or without crop residues and phosphate solubilizing bacteria. J. Agric. Sci. 141, 359–369 (2003).

    CAS 
    Article 

    Google Scholar 

  • Vyas, P. & Gulati, A. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol. 9, 174 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Mukherjee, P. K. & Rai, R. K. Sensitivity of P uptake to change in root growth and soil volume as influenced by VAM, PSB and P levels in wheat and chickpeas. Ann. Agric. Res. 20, 528–530 (1999).

    Google Scholar 

  • Egamberdiyeva, D. Proc. Inst. Microbiol. Tashkent, Uzekistan (2004).

  • Mihoub, A., Daddi Bouhoun, M., Naeem, A. & Saker, M. L. Low-molecular weight organic acids improve plant availability of phosphorus in different textured calcareous soils. Arch. Agron. Soil Sci. 63, 1023–1034 (2017).

    CAS 
    Article 

    Google Scholar 

  • Thakuria, D. et al. Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Curr. Sci. 86, 978–985 (2004).

    Google Scholar 

  • Mamta, P. et al. Stimulatory effect of phosphate solubilizing bacteria on plant growth, stevioside and rebaudioside-A content of Stevia rebaudiana Bertoni. Appl. Soil Ecol. 46, 222–229 (2010).

    Article 

    Google Scholar 

  • Banik, S. B. K. Solubilization of inorganic phosphate and production of organic acids by micro-organisms isolated in sucrose tricalcium phosphate agar plate. Zentralblat. Bakterol. Parasilenkl. Infektionskr. Hyg. 136, 478–486 (1981).

    CAS 

    Google Scholar 

  • Stevenson, F. J. Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micro-nutrients (Wiley, 2005).

    Google Scholar 

  • Ekin, Z. Performance of phosphorus solubilizing bacteria for improving growth and yield of sun flower (Helianthus annuus L.) in the presence of phosphorus fertilizer. Afr. J. Biotechnol. 9, 3794–3800 (2010).

    CAS 

    Google Scholar 

  • Zabihi, H. R., Savaghebi, G. R., Khavazi, K., Ganjali, A. & Miransari, M. Pseudomonas bacteria and phosphorus fertilization, affecting wheat (Triticum aestivum L.) yield and P uptake under green house and field conditions. Acta Physiol. Plant 33, 145–152 (2010).

    Article 

    Google Scholar 

  • Gulati, A., Rahi, P. & Vyas, P. Characterization of phosphate-solubilizing fluorescent Pseudomonas from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Curr. Microbiol. 56, 73–79 (2007).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Kloepper, J. W., Lifshitz, R. & Zablotowicz, R. M. Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7, 39–44 (1989).

    Article 

    Google Scholar 

  • Satchell, J. E. Ecology and environment in the United Arab Emirates. J. Arid. Environ. 1, 201–226 (1978).

    ADS 
    Article 

    Google Scholar 

  • Biswas, D. R. Nutrient recycling potential of rock phosphate and waste mica enriched compost on crop productivity and changes in soil fertility under potato–soybean cropping sequence in an Inceptisol of Indo-Gangetic Plains of India. Nutr. Cycl. Agroecosyst. 89, 15–30 (2011).

    Article 

    Google Scholar 

  • Mitra, S. et al. Effect of integrated nutrient management on fiber yield, nutrient uptake and soil fertility in jute (Corchorus olitorius). Indian J. Anim. Sci. 80(9), 801–804 (2010).

    Google Scholar 

  • Laxminarayana, K. Effect of integrated use of inorganic and organic manures on soil properties, yield and nutrient uptake of rice in Ultisols of Mizoram. J. Indian Soc. Soil Sci. 54, 120–123 (2006).

    Google Scholar 

  • Sanyal, S. K. & De Datta, S. K. Chemistry of phosphorus transformations in soil. Adv. Soil Sci. 16, 1–120 (1991).

    CAS 

    Google Scholar 

  • Briedis, C. et al. Soil organic matter pools and carbon-protection mechanisms in aggregate classes influenced by surface liming in a no-till system. Geoderma 170, 80–88 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bronick, C. J. & Lal, R. Soil structure and management: A review. Geoderma 124, 3–22 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Krieg, N. R. & Holt, J. G. Bergey’s Manual of Systemetic Bacteriology Vol. 1, 984 (Williams & Wilkin, 1984).

    Google Scholar 

  • Holt, J. G. et al. (eds) Bergey’s Manual of Determinative Bacteriology 9th edn, 787 (The Williams & Wilkin, 1994).

    Google Scholar 

  • Gordon, R. E., Haynes, W. C. & Pang, C. N. The Genus Bacillus. Agricultural Handbook. No. 427 283 (Department of Agriculture, 1973).

    Google Scholar 

  • Nautiyal, C. S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170(1), 265–270 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nelson, D. W. & Sommers, L. E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Part 2 2nd edn, Vol. 14 (ed. Page, A. L.) 961–1010 (Wiley, 1996).

    Google Scholar 

  • Eivazi, F. & Tabatabai, M. Phosphatases in soils. Soil Biol. Biochem. 9, 167–172 (1977).

    CAS 
    Article 

    Google Scholar 

  • Alexander, D. B. & Zuberer, D. A. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils 12, 39–45 (1991).

    CAS 
    Article 

    Google Scholar 

  • Vincet, J. M. A. Manual for the Practical Study of the Root-Nodule Bacteria; IBPH and Book No. 15 (Blackwell Scientific Publication, 1970).

    Google Scholar 

  • Alagawadi, A. R. & Gaur, A. C. Associative effect of Rhizobium and phosphate solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant Soil. 105, 241–246 (1988).

    Article 

    Google Scholar 

  • Satyaprakash, M., Nikitha, T., Reddi, E. U. B., Sadhana, B. & Vani, S. S. Phosphorous and phosphate solubilising bacteria and their role in plant nutrition. Int. J. Curr. Microbiol. Appl. Sci. 6, 2133–2144 (2017).

    CAS 
    Article 

    Google Scholar 

  • Wu, S. C., Cao, Z. H., Li, Z. G., Cheung, K. C. & Wong, M. H. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma 125, 155–166 (2005).

    ADS 
    Article 

    Google Scholar 

  • Thomas, G. W. Soil pH and soil acidity. In Methods of Soil Analysis, Part 3, Chemical Methods Vol. 5 (eds Sparks, D. L. et al.) 475–490 (Wiley, 1996).

    Google Scholar 

  • Rhoades, J. D. Salinity, electrical conductivity and total dissolved solids. In Methods of Soil Analysis, Part 3, Chemical Methods Vol. 5 (eds Sparks, D. L. et al.) 417–435 (Soil Science Society of America, 1996).

    Google Scholar 

  • Bremner, J. M. & Breitenbeck, G. A. A simple method for determination of ammonium in semi-micro Kjeldahl analysis of soil and plant material using a block digestor. Commun. Soil Sci. Plant Anal. 14, 905–913 (1983).

    CAS 
    Article 

    Google Scholar 

  • Ryan, J., Estefan, G. & Rashid, A. Soil and Plant Analysis Laboratory Manual 2nd edn, 172 (The National Agricultural Research Center (NARC), 2001).

    Google Scholar 

  • Olsen, S. R., Cole, C. V., Watanabe, F. S. & Dean, L. A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate (No. 939) (Department of Agriculture Circular, 1954).

    Google Scholar 

  • Loeppert, R. H. & Suarez, D. L. Carbonate and gypsum. In Methods of Soil Analysis, Part 3, Chemical Methods Vol. 9 (eds Sparks, D. L. et al.) 181–197 (Soil Science Society of America, 1996).

    Google Scholar 

  • Bahadur, L., Tiwari, D. D., Mishra, J. & Gupta, B. R. Effect of integrated nutrient management on yield, microbial population and changes in soil properties under rice-wheat cropping system in sodic soil. J. Indian Soc. Soil Sci. 60(4), 326–329 (2012).

    CAS 

    Google Scholar 

  • Nelson, D. W. & Sommers, L. E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Part 2 2nd edn, Vol. 9 (eds Sparks, D. L. et al.) 961–1010 (Soil Science Society of America, 1996).

    Google Scholar 

  • Richards, L. A. Diagnosis and improvement of saline and alkali soils. LWW 78(2), 154 (1954).

    Google Scholar 

  • Steel, R. G. D. & Torrie, J. H. Principles and Procedures of Statistics, a Biometrical Approach 195–233 (McGraw Hill, 1996).

    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    The influence and acting pattern of China's national carbon emission trading scheme on regional ecologicalization efficiency of industry

    Free hand hitting of stone-like objects in wild gorillas