Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T. IPBES (2019): Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).
Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).
Google Scholar
Warren, R., Price, J., Graham, E., Forstenhaeusler, N. & VanDerWal, J. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5 °C rather than 2 °C. Science 360, 791–795 (2018).
Google Scholar
Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl Acad. Sci. USA 109, 8606–8611 (2012).
Google Scholar
Travis, J. M. J. Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc. Biol. Sci. 270, 467–473 (2003).
Google Scholar
Hill, J. K. et al. Impacts of landscape structure on butterfly range expansion. Ecol. Lett. 4, 313–321 (2001).
Guo, F., Lenoir, J. & Bonebrake, T. C. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1315 (2018).
Google Scholar
McLaughlin, J. F., Hellmann, J. J., Boggs, C. L. & Ehrlich, P. R. Climate change hastens population extinctions. Proc. Natl Acad. Sci. USA 99, 6070–6074 (2002).
Google Scholar
Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5, e157 (2007).
Google Scholar
Mantyka-Pringle, C. S. et al. Climate change modifies risk of global biodiversity loss due to land-cover change. Biol. Conserv. 187, 103–111 (2015).
Conradie, S. R., Woodborne, S. M., Cunningham, S. J. & McKechnie, A. E. Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st century. Proc. Natl Acad. Sci. USA 116, 14065–14070 (2019).
Google Scholar
Forister, M. L. et al. Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. Proc. Natl Acad. Sci. USA 107, 2088–2092 (2010).
Google Scholar
Oliver, T. H. & Morecroft, M. D. Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdiscip. Rev. Clim. Change 5, 317–335 (2014).
MacLean, S. A. & Beissinger, S. R. Species’ traits as predictors of range shifts under contemporary climate change: a review and meta-analysis. Glob. Change Biol. 23, 4094–4105 (2017).
Pacifici, M. et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Change 7, 205–208 (2017).
Root, T. Energy constraints on avian distributions and abundances. Ecology 69, 330–339 (1988).
Whitfield, M. C., Smit, B., McKechnie, A. E. & Wolf, B. O. Avian thermoregulation in the heat: scaling of heat tolerance and evaporative cooling capacity in three southern African arid-zone passerines. J. Exp. Biol. 218, 1705–1714 (2015).
Google Scholar
McKechnie, A. E. et al. Avian thermoregulation in the heat: evaporative cooling in five Australian passerines reveals within-order biogeographic variation in heat tolerance. J. Exp. Biol. 220, 2436–2444 (2017).
Google Scholar
Platts, P. J. et al. Habitat availability explains variation in climate-driven range shifts across multiple taxonomic groups. Sci. Rep. 9, 15039 (2019).
Google Scholar
Pearson, R. G. Climate change and the migration capacity of species. Trends Ecol. Evol. 21, 111–113 (2006).
Google Scholar
Partners in Flight. Avian Conservation Assessment Database Version 2021 (accessed 5 February 2021); http://pif.birdconservancy.org/ACAD
Hill, M. J. & Guerschman, J. P. The MODIS global vegetation fractional cover product 2001–2018: characteristics of vegetation fractional cover in grasslands and savanna woodlands. Remote Sens. (Basel) 12, 406 (2020).
Wiebe, K. L. & Gerstmar, H. Influence of spring temperatures and individual traits on reproductive timing and success in a migratory woodpecker. Auk 127, 917–925 (2010).
Viana, D. S. & Chase, J. M. Ecological traits underlying interspecific variation in climate matching of birds. Glob. Ecol. Biogeogr. 31, 1021–1034 (2022).
Kellermann, V., Van Heerwaarden, B., Sgrò, C. M. & Hoffmann, A. A. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science 325, 1244–1246 (2009).
Google Scholar
Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).
Mason, L. R. et al. Population responses of bird populations to climate change on two continents vary with species’ ecological traits but not with direction of change in climate suitability. Clim. Change 157, 337–354 (2019).
Coyle, J. R., Hurlbert, A. H. & White, E. P. Opposing mechanisms drive richness patterns of core and transient bird species. Am. Nat. 181, E83–E90 (2013).
Google Scholar
Valiela, I. & Martinetto, P. Changes in bird abundance in eastern North America: urban sprawl and global footprint? BioScience 57, 360–370 (2007).
Smith, S. J., Edmonds, J., Hartin, C. A., Mundra, A. & Calvin, K. Near-term acceleration in the rate of temperature change. Nat. Clim. Change 5, 333–336 (2015).
Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501 (2021).
Google Scholar
Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).
Google Scholar
Currie, D. J. & Venne, S. Climate change is not a major driver of shifts in the geographical distributions of North American birds. Glob. Ecol. Biogeogr. 26, 333–346 (2017).
Socolar, J. B., Epanchin, P. N., Beissinger, S. R. & Tingley, M. W. Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts. Proc. Natl Acad. Sci. USA 114, 12976–12981 (2017).
Google Scholar
Barnagaud, J.-Y. et al. Relating habitat and climatic niches in birds. PLoS ONE 7, e32819 (2012).
Google Scholar
Ponti, R., Arcones, A., Ferrer, X. & Vieites, D. R. Seasonal climatic niches diverge in migratory birds. Ibis 162, 318–330 (2020).
Zurell, D., Gallien, L., Graham, C. H. & Zimmermann, N. E. Do long-distance migratory birds track their niche through seasons? J. Biogeogr. 45, 1459–1468 (2018).
Stephens, P. A. et al. Consistent response of bird populations to climate change on two continents. Science 352, 84–87 (2016).
Google Scholar
Ralston, J., DeLuca, W. V., Feldman, R. E. & King, D. I. Population trends influence species ability to track climate change. Glob. Change Biol. 23, 1390–1399 (2017).
Magurran, A. E. et al. Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends Ecol. Evol. 25, 574–582 (2010).
Google Scholar
Jarzyna, M. A. & Jetz, W. A near half-century of temporal change in different facets of avian diversity. Glob. Change Biol. 23, 2999–3011 (2017).
van der Bolt, B., van Nes, E. H., Bathiany, S., Vollebregt, M. E. & Scheffer, M. Climate reddening increases the chance of critical transitions. Nat. Clim. Change 8, 478–484 (2018).
Bowler, D. E., Heldbjerg, H., Fox, A. D., O’Hara, R. B. & Böhning-Gaese, K. Disentangling the effects of multiple environmental drivers on population changes within communities. J. Anim. Ecol. 87, 1034–1045 (2018).
Google Scholar
Zurell, D., Graham, C. H., Gallien, L., Thuiller, W. & Zimmermann, N. E. Long-distance migratory birds threatened by multiple independent risks from global change. Nat. Clim. Change 8, 992–996 (2018).
Northrup, J. M., Rivers, J. W., Yang, Z. & Betts, M. G. Synergistic effects of climate and land-use change influence broad-scale avian population declines. Glob. Change Biol. 25, 1561–1575 (2019).
Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).
Google Scholar
Pardieck, K. L., Ziolkowski, D. J. Jr, Lutmerding, M., Aponte, V. & Hudson, M.-A. R. North American Breeding Bird Survey Dataset 1966–2018 Version 2018.0. (US Geological Survey, 2019); https://www.sciencebase.gov/catalog/item/5d65256ae4b09b198a26c1d7
Harris, D. J., Taylor, S. D. & White, E. P. Forecasting biodiversity in breeding birds using best practices. PeerJ 6, e4278 (2018).
Google Scholar
Wickham, H., Francois, R., Henry, L. & Müller, K. dplyr: a Grammar of Data Manipulation. R package version 1.0.0 https://cran.r-project.org/web/packages/dplyr/index.html (2020).
Wickham, H. & Henry, L. tidyr: Tidy Messy Data. R package version 1.1.0 https://cran.r-project.org/web/packages/tidyr/index.html (2020).
Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.0-12 https://cran.r-project.org/web/packages/raster/index.html (2015).
Bivand, R., Pebesma, E. J. & Gómez-Rubio, V. Applied Spatial Data Analysis with R (Springer, 2013).
Hijmans, R. J. geosphere: Spherical Trigonometry. R package version 1.5–10 https://cran.r-project.org/web/packages/geosphere/index.html (2019).
Hart, E. M. & Bell, K. prism. R package version 0.0.6 https://github.com/ropensci/prism (2015).
Senyondo, H. et al. rdataretriever: R interface to the data retriever. J. Open Source Softw. 6, 2800 (2021).
Morris, B. D. & White, E. P. The EcoData retriever: improving access to existing ecological data. PLoS ONE 8, e65848 (2013).
Google Scholar
Senyondo, H. et al. Retriever: data retrieval tool. J. Open Source Softw. 2, 451 (2017).
Hurlbert, A. H. & White, E. P. Disparity between range map- and survey-based analyses of species richness: patterns, processes and implications. Ecol. Lett. 8, 319–327 (2005).
Harris, D. J. Generating realistic assemblages with a joint species distribution model. Methods Ecol. Evol. 6, 465–473 (2015).
Sheard, C. et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463 (2020).
Google Scholar
Eyres, A., Böhning-Gaese, K. & Fritz, S. A. Quantification of climatic niches in birds: adding the temporal dimension. J. Avian Biol. 48, 1517–1531 (2017).
Martin, A. E. & Fahrig, L. Habitat specialist birds disperse farther and are more migratory than habitat generalist birds. Ecology 99, 2058–2066 (2018).
Google Scholar
Sauer, J. R. & Link, W. A. Analysis of the North American Breeding Bird Survey using hierarchical models. Auk 128, 87–98 (2011).
García Molinos, J., Schoeman, D. S., Brown, C. J. & Burrows, M. T. VoCC: an R package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evol. 10, 2195–2202 (2019).
Krenek, S., Berendonk, T. U. & Petzoldt, T. Thermal performance curves of Paramecium caudatum: a model selection approach. Eur. J. Protistol. 47, 124–137 (2011).
Google Scholar
Bahn, V. & McGill, B. J. Can niche-based distribution models outperform spatial interpolation? Glob. Ecol. Biogeogr. 16, 733–742 (2007).
Dobson, L. L., La Sorte, F. A., Manne, L. L. & Hawkins, B. A. The diversity and abundance of North American bird assemblages fail to track changing productivity. Ecology 96, 1105–1114 (2015).
Google Scholar
Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).
Tikhonov, G. et al. Joint species distribution modelling with the R-package HMSC. Methods Ecol. Evol. 11, 442–447 (2020).
Google Scholar
Greenwell, B., Boehmke, B., Cunningham, J. & GBM Developers. gbm: Generalized boosted regression models. R package version 2.1.5 https://cran.r-project.org/web/packages/gbm/index.html (2019).
Wood, S. N. Generalized Additive Models: an Introduction with R (CRC Press/Taylor & Francis Group, 2017).
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
Google Scholar
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
Google Scholar
Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
Stan Development Team. Stan Modeling Language Users Guide and Reference Manual (2020); https://mc-stan.org/users/documentation/
Source: Ecology - nature.com