in

Increasing climatic decoupling of bird abundances and distributions

  • Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T. IPBES (2019): Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).

  • Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Warren, R., Price, J., Graham, E., Forstenhaeusler, N. & VanDerWal, J. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5 °C rather than 2 °C. Science 360, 791–795 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl Acad. Sci. USA 109, 8606–8611 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Travis, J. M. J. Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc. Biol. Sci. 270, 467–473 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hill, J. K. et al. Impacts of landscape structure on butterfly range expansion. Ecol. Lett. 4, 313–321 (2001).

    Google Scholar 

  • Guo, F., Lenoir, J. & Bonebrake, T. C. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1315 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • McLaughlin, J. F., Hellmann, J. J., Boggs, C. L. & Ehrlich, P. R. Climate change hastens population extinctions. Proc. Natl Acad. Sci. USA 99, 6070–6074 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5, e157 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mantyka-Pringle, C. S. et al. Climate change modifies risk of global biodiversity loss due to land-cover change. Biol. Conserv. 187, 103–111 (2015).

    Google Scholar 

  • Conradie, S. R., Woodborne, S. M., Cunningham, S. J. & McKechnie, A. E. Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st century. Proc. Natl Acad. Sci. USA 116, 14065–14070 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Forister, M. L. et al. Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. Proc. Natl Acad. Sci. USA 107, 2088–2092 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oliver, T. H. & Morecroft, M. D. Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdiscip. Rev. Clim. Change 5, 317–335 (2014).

    Google Scholar 

  • MacLean, S. A. & Beissinger, S. R. Species’ traits as predictors of range shifts under contemporary climate change: a review and meta-analysis. Glob. Change Biol. 23, 4094–4105 (2017).

    Google Scholar 

  • Pacifici, M. et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Change 7, 205–208 (2017).

    Google Scholar 

  • Root, T. Energy constraints on avian distributions and abundances. Ecology 69, 330–339 (1988).

    Google Scholar 

  • Whitfield, M. C., Smit, B., McKechnie, A. E. & Wolf, B. O. Avian thermoregulation in the heat: scaling of heat tolerance and evaporative cooling capacity in three southern African arid-zone passerines. J. Exp. Biol. 218, 1705–1714 (2015).

    PubMed 

    Google Scholar 

  • McKechnie, A. E. et al. Avian thermoregulation in the heat: evaporative cooling in five Australian passerines reveals within-order biogeographic variation in heat tolerance. J. Exp. Biol. 220, 2436–2444 (2017).

    PubMed 

    Google Scholar 

  • Platts, P. J. et al. Habitat availability explains variation in climate-driven range shifts across multiple taxonomic groups. Sci. Rep. 9, 15039 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pearson, R. G. Climate change and the migration capacity of species. Trends Ecol. Evol. 21, 111–113 (2006).

    PubMed 

    Google Scholar 

  • Partners in Flight. Avian Conservation Assessment Database Version 2021 (accessed 5 February 2021); http://pif.birdconservancy.org/ACAD

  • Hill, M. J. & Guerschman, J. P. The MODIS global vegetation fractional cover product 2001–2018: characteristics of vegetation fractional cover in grasslands and savanna woodlands. Remote Sens. (Basel) 12, 406 (2020).

    Google Scholar 

  • Wiebe, K. L. & Gerstmar, H. Influence of spring temperatures and individual traits on reproductive timing and success in a migratory woodpecker. Auk 127, 917–925 (2010).

    Google Scholar 

  • Viana, D. S. & Chase, J. M. Ecological traits underlying interspecific variation in climate matching of birds. Glob. Ecol. Biogeogr. 31, 1021–1034 (2022).

    Google Scholar 

  • Kellermann, V., Van Heerwaarden, B., Sgrò, C. M. & Hoffmann, A. A. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science 325, 1244–1246 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).

    Google Scholar 

  • Mason, L. R. et al. Population responses of bird populations to climate change on two continents vary with species’ ecological traits but not with direction of change in climate suitability. Clim. Change 157, 337–354 (2019).

    Google Scholar 

  • Coyle, J. R., Hurlbert, A. H. & White, E. P. Opposing mechanisms drive richness patterns of core and transient bird species. Am. Nat. 181, E83–E90 (2013).

    PubMed 

    Google Scholar 

  • Valiela, I. & Martinetto, P. Changes in bird abundance in eastern North America: urban sprawl and global footprint? BioScience 57, 360–370 (2007).

    Google Scholar 

  • Smith, S. J., Edmonds, J., Hartin, C. A., Mundra, A. & Calvin, K. Near-term acceleration in the rate of temperature change. Nat. Clim. Change 5, 333–336 (2015).

    Google Scholar 

  • Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Currie, D. J. & Venne, S. Climate change is not a major driver of shifts in the geographical distributions of North American birds. Glob. Ecol. Biogeogr. 26, 333–346 (2017).

    Google Scholar 

  • Socolar, J. B., Epanchin, P. N., Beissinger, S. R. & Tingley, M. W. Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts. Proc. Natl Acad. Sci. USA 114, 12976–12981 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barnagaud, J.-Y. et al. Relating habitat and climatic niches in birds. PLoS ONE 7, e32819 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ponti, R., Arcones, A., Ferrer, X. & Vieites, D. R. Seasonal climatic niches diverge in migratory birds. Ibis 162, 318–330 (2020).

    Google Scholar 

  • Zurell, D., Gallien, L., Graham, C. H. & Zimmermann, N. E. Do long-distance migratory birds track their niche through seasons? J. Biogeogr. 45, 1459–1468 (2018).

    Google Scholar 

  • Stephens, P. A. et al. Consistent response of bird populations to climate change on two continents. Science 352, 84–87 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Ralston, J., DeLuca, W. V., Feldman, R. E. & King, D. I. Population trends influence species ability to track climate change. Glob. Change Biol. 23, 1390–1399 (2017).

    Google Scholar 

  • Magurran, A. E. et al. Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends Ecol. Evol. 25, 574–582 (2010).

    PubMed 

    Google Scholar 

  • Jarzyna, M. A. & Jetz, W. A near half-century of temporal change in different facets of avian diversity. Glob. Change Biol. 23, 2999–3011 (2017).

    Google Scholar 

  • van der Bolt, B., van Nes, E. H., Bathiany, S., Vollebregt, M. E. & Scheffer, M. Climate reddening increases the chance of critical transitions. Nat. Clim. Change 8, 478–484 (2018).

    Google Scholar 

  • Bowler, D. E., Heldbjerg, H., Fox, A. D., O’Hara, R. B. & Böhning-Gaese, K. Disentangling the effects of multiple environmental drivers on population changes within communities. J. Anim. Ecol. 87, 1034–1045 (2018).

    PubMed 

    Google Scholar 

  • Zurell, D., Graham, C. H., Gallien, L., Thuiller, W. & Zimmermann, N. E. Long-distance migratory birds threatened by multiple independent risks from global change. Nat. Clim. Change 8, 992–996 (2018).

    Google Scholar 

  • Northrup, J. M., Rivers, J. W., Yang, Z. & Betts, M. G. Synergistic effects of climate and land-use change influence broad-scale avian population declines. Glob. Change Biol. 25, 1561–1575 (2019).

    Google Scholar 

  • Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pardieck, K. L., Ziolkowski, D. J. Jr, Lutmerding, M., Aponte, V. & Hudson, M.-A. R. North American Breeding Bird Survey Dataset 1966–2018 Version 2018.0. (US Geological Survey, 2019); https://www.sciencebase.gov/catalog/item/5d65256ae4b09b198a26c1d7

  • Harris, D. J., Taylor, S. D. & White, E. P. Forecasting biodiversity in breeding birds using best practices. PeerJ 6, e4278 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wickham, H., Francois, R., Henry, L. & Müller, K. dplyr: a Grammar of Data Manipulation. R package version 1.0.0 https://cran.r-project.org/web/packages/dplyr/index.html (2020).

  • Wickham, H. & Henry, L. tidyr: Tidy Messy Data. R package version 1.1.0 https://cran.r-project.org/web/packages/tidyr/index.html (2020).

  • Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.0-12 https://cran.r-project.org/web/packages/raster/index.html (2015).

  • Bivand, R., Pebesma, E. J. & Gómez-Rubio, V. Applied Spatial Data Analysis with R (Springer, 2013).

  • Hijmans, R. J. geosphere: Spherical Trigonometry. R package version 1.5–10 https://cran.r-project.org/web/packages/geosphere/index.html (2019).

  • Hart, E. M. & Bell, K. prism. R package version 0.0.6 https://github.com/ropensci/prism (2015).

  • Senyondo, H. et al. rdataretriever: R interface to the data retriever. J. Open Source Softw. 6, 2800 (2021).

    Google Scholar 

  • Morris, B. D. & White, E. P. The EcoData retriever: improving access to existing ecological data. PLoS ONE 8, e65848 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Senyondo, H. et al. Retriever: data retrieval tool. J. Open Source Softw. 2, 451 (2017).

    Google Scholar 

  • Hurlbert, A. H. & White, E. P. Disparity between range map- and survey-based analyses of species richness: patterns, processes and implications. Ecol. Lett. 8, 319–327 (2005).

    Google Scholar 

  • Harris, D. J. Generating realistic assemblages with a joint species distribution model. Methods Ecol. Evol. 6, 465–473 (2015).

    Google Scholar 

  • Sheard, C. et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eyres, A., Böhning-Gaese, K. & Fritz, S. A. Quantification of climatic niches in birds: adding the temporal dimension. J. Avian Biol. 48, 1517–1531 (2017).

    Google Scholar 

  • Martin, A. E. & Fahrig, L. Habitat specialist birds disperse farther and are more migratory than habitat generalist birds. Ecology 99, 2058–2066 (2018).

    PubMed 

    Google Scholar 

  • Sauer, J. R. & Link, W. A. Analysis of the North American Breeding Bird Survey using hierarchical models. Auk 128, 87–98 (2011).

    Google Scholar 

  • García Molinos, J., Schoeman, D. S., Brown, C. J. & Burrows, M. T. VoCC: an R package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evol. 10, 2195–2202 (2019).

    Google Scholar 

  • Krenek, S., Berendonk, T. U. & Petzoldt, T. Thermal performance curves of Paramecium caudatum: a model selection approach. Eur. J. Protistol. 47, 124–137 (2011).

    PubMed 

    Google Scholar 

  • Bahn, V. & McGill, B. J. Can niche-based distribution models outperform spatial interpolation? Glob. Ecol. Biogeogr. 16, 733–742 (2007).

    Google Scholar 

  • Dobson, L. L., La Sorte, F. A., Manne, L. L. & Hawkins, B. A. The diversity and abundance of North American bird assemblages fail to track changing productivity. Ecology 96, 1105–1114 (2015).

    PubMed 

    Google Scholar 

  • Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).

    Google Scholar 

  • Tikhonov, G. et al. Joint species distribution modelling with the R-package HMSC. Methods Ecol. Evol. 11, 442–447 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Greenwell, B., Boehmke, B., Cunningham, J. & GBM Developers. gbm: Generalized boosted regression models. R package version 2.1.5 https://cran.r-project.org/web/packages/gbm/index.html (2019).

  • Wood, S. N. Generalized Additive Models: an Introduction with R (CRC Press/Taylor & Francis Group, 2017).

  • Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Google Scholar 

  • Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Google Scholar 

  • Stan Development Team. Stan Modeling Language Users Guide and Reference Manual (2020); https://mc-stan.org/users/documentation/


  • Source: Ecology - nature.com

    The influence and acting pattern of China's national carbon emission trading scheme on regional ecologicalization efficiency of industry

    Free hand hitting of stone-like objects in wild gorillas