in

Social support correlates with glucocorticoid concentrations in wild African elephant orphans

  • Wu, A. Social buffering of stress – Physiological and ethological perspectives. Appl. Anim. Behav. Sci. 239, 105325 (2021).

    Google Scholar 

  • Hennessy, M. B., Kaiser, S. & Sachser, N. Social buffering of the stress response: diversity, mechanisms, and functions. Front. Neuroendocrinol. 30, 470–482 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Young, C., Majolo, B., Heistermann, M., Schülke, O. & Ostner, J. Responses to social and environmental stress are attenuated by strong male bonds in wild macaques. Proc. Natl Acad. Sci. USA 111, 18195–18200 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stanton, M. E., Patterson, J. M. & Levine, S. Social influences on conditioned cortisol secretion in the squirrel monkey. Psychoneuroendocrinology 10, 125–134 (1985).

    CAS 
    PubMed 

    Google Scholar 

  • Caldji, C., Diorio, J. & Meaney, M. J. Variations in maternal care in infancy regulate the development of stress reactivity. Biol. Psychiatry 48, 1164–1174 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Novak, M. A., Hamel, A. F., Kelly, B. J., Dettmer, A. M. & Meyer, J. S. Stress, the HPA axis, and nonhuman primate well-being: a review. Appl. Anim. Behav. Sci. 143, 135–149 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, D. et al. Maternal Care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Sci. Ment. Heal. Stress Brain 9, 75–78 (1997).

    Google Scholar 

  • Gjerstad, J. K., Lightman, S. L. & Spiga, F. Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility. Stress 21, 403–416 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spiga, F., Walker, J. J., Terry, J. R. & Lightman, S. L. HPA axis-rhythms. Compr. Physiol. 4, 1273–1298 (2014).

    PubMed 

    Google Scholar 

  • Sapolsky, R. M. Why Zebras Don’t Get Ulcers (Henry Holt and Company, LLC, 2004).

  • Campos, F. A. et al. Glucocorticoid exposure predicts survival in female baboons. Sci. Adv. 7, 1–10 (2021).

    Google Scholar 

  • Banerjee, S. B., Arterbery, A. S., Fergus, D. J. & Adkins-Regan, E. Deprivation of maternal care has long-lasting consequences for the hypothalamic-pituitary-adrenal axis of zebra finches. Proc. R. Soc. B Biol. Sci. 279, 759–766 (2012).

    Google Scholar 

  • Hennessy, M. B., Nigh, C. K., Sims, M. L. & Long, S. J. Plasma cortisol and vocalization responses of postweaning age guinea pigs to maternal and sibling separation: evidence for filial attachment after weaning. Dev. Psychobiol. 28, 103–115 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Hennessy, M. B., O’Leary, S. K., Hawke, J. L. & Wilson, S. E. Social influences on cortisol and behavioral responses of preweaning, periadolescent, and adult guinea pigs. Physiol. Behav. 76, 305–314 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Wiener, S. G., Johnson, D. F. & Levine, S. Influence of postnatal rearing conditions on the response of squirrel monkey infants to brief perturbations in mother-infant relationships. Physiol. Behav. 39, 21–26 (1987).

    CAS 
    PubMed 

    Google Scholar 

  • Girard-Buttoz, C. et al. Early maternal loss leads to short-but not long-term effects on diurnal cortisol slopes in wild chimpanzees. Elife 10, e64134 (2021).

  • Rosenbaum, S. et al. Social bonds do not mediate the relationship between early adversity and adult glucocorticoids in wild baboons. Proc. Natl Acad. Sci. USA 117, 20052–20062 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moss, C. Elephant Memories: Thirteen Years in the Life of an Elephant Family (Univ. Chicago Press, 1988).

  • Douglas-Hamilton, I., Bhalla, S., Wittemyer, G. & Vollrath, F. Behavioural reactions of elephants towards a dying and deceased matriarch. Appl. Anim. Behav. Sci. 100, 87–102 (2006).

    Google Scholar 

  • Shoshani, J., Kupsky, W. J. & Marchant, G. H. Elephant brain. Part I: gross morphology, functions, comparative anatomy, and evolution. Brain Res. Bull. 70, 124–157 (2006).

    PubMed 

    Google Scholar 

  • Goldenberg, S. Z. & Wittemyer, G. Orphaned female elephant social bonds reflect lack of access to mature adults. Sci. Rep. 7, 14408 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Goldenberg, S. Z. & Wittemyer, G. Orphaning and natal group dispersal are associated with social costs in female elephants. Anim. Behav. 143, 1–8 (2018).

    Google Scholar 

  • Lee, P. C. Allomothering among African elephants. Anim. Behav. 35, 278–291 (1987).

    Google Scholar 

  • Parker, J. M. et al. Poaching of African elephants indirectly decreases population growth through lowered orphan survival. Curr. Biol. 31, 4156–4162.e5 (2021).

  • Wittemyer, G. et al. Where sociality and relatedness diverge: the genetic basis for hierarchical social organization in African elephants. Proc. R. Soc. B Biol. Sci. 276, 3513–3521 (2009).

    Google Scholar 

  • Goldenberg, S. Z., Douglas-Hamilton, I. & Wittemyer, G. Vertical transmission of social roles drives resilience to poaching in elephant metworks. Curr. Biol. 26, 75–79 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Gobush, K. S., Mutayoba, B. M. & Wasser, S. K. Long-term impacts of poaching on relatedness, stress physiology, and reproductive output of adult female African elephants. Conserv. Biol. 22, 1590–1599 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Gobush, K. S. et al. Loxodonta africana (African Savanna Elephant). Loxodonta africana: the IUCN red list of threatened species 2021 e.T181008073A181022663 https://doi.org/10.2305/IUCN.UK.2021-1.RLTS.T181008073A181022663.en (2021).

  • Wittemyer, G. et al. Illegal killing for ivory drives global decline in African elephants. Proc. Natl Acad. Sci. USA 111, 13117–13121 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wittemyer, G., Daballen, D. & Douglas-Hamilton, I. Comparative Demography of an At-Risk African Elephant Population. PLoS ONE 8, e53726 (2013).

  • McCormick, S. D. & Romero, L. M. Conservation endocrinology. Bioscience 67, 429–442 (2017).

    Google Scholar 

  • Wittemyer, G. The elephant population of Samburu and Buffalo Springs National Reserves, Kenya. Afr. J. Ecol. 39, 357–369 (2001).

    Google Scholar 

  • Cockrem, J. F. Individual variation in glucocorticoid stress responses in animals. Gen. Comp. Endocrinol. 181, 45–58 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Taff, C. C., Schoenle, L. A. & Vitousek, M. N. The repeatability of glucocorticoids: a review and meta-analysis. Gen. Comp. Endocrinol. 260, 136–145 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Hooten, M. B. & Hobbs, N. T. A guide to Bayesian model selection for ecologists. Ecol. Monogr. 85, 3–28 (2015).

    Google Scholar 

  • Wittemyer, G. & Getz, W. M. Hierarchical dominance structure and social organization in African elephants, Loxodonta africana. Anim. Behav. 73, 671–681 (2007).

    Google Scholar 

  • Heim, C., Ehlert, U. & Hellhammer, D. H. The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology 25, 1–35 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Dickens, M. J. & Romero, L. M. A consensus endocrine profile for chronically stressed wild animals does not exist. Gen. Comp. Endocrinol. 191, 177–189 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Ma, D., Serbin, L. A. & Stack, D. M. How children’s anxiety symptoms impact the functioning of the hypothalamus–pituitary–adrenal axis over time: a cross-lagged panel approach using hierarchical linear modeling. Dev. Psychopathol. 31, 1–15 (2018).

    Google Scholar 

  • Blas, J., Bortolotti, G. R., Tella, J. L., Baos, R. & Marchant, T. A. Stress response during development predicts fitness in a wild, long lived vertebrate. Proc. Natl Acad. Sci. USA 104, 8880–8884 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boonstra, R. Reality as the leading cause of stress: rethinking the impact of chronic stress in nature. Funct. Ecol. 27, 11–23 (2013).

    Google Scholar 

  • Gunnar, M. R. & Vazquez, D. M. Low cortisol and a flattening of expected daytime rhythm: Potential indices of risk in human development. Dev. Psychopathol. 13, 515–538 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Perry, R. E. et al. Corticosterone administration targeting a hypo-reactive HPA axis rescues a socially-avoidant phenotype in scarcity-adversity reared rats. Dev. Cogn. Neurosci. 40, 100716 (2019).

  • Fries, E., Hesse, J., Hellhammer, J. & Hellhammer, D. H. A new view on hypocortisolism. Psychoneuroendocrinology 30, 1010–1016 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Dorsey, C., Dennis, P., Guagnano, G., Wood, T. & Brown, J. L. Decreased baseline fecal glucocorticoid concentrations associated with skin and oral lesions in black rhinoceros (Diceros bicornis). J. Zoo. Wildl. Med. 41, 616–625 (2010).

    PubMed 

    Google Scholar 

  • Pawluski, J. et al. Low plasma cortisol and fecal cortisol metabolite measures as indicators of compromised welfare in domestic horses (Equus caballus). PLoS ONE 12, 1–18 (2017).

    Google Scholar 

  • Feng, X. et al. Maternal separation produces lasting changes in cortisol and behavior in rhesus monkeys. Proc. Natl Acad. Sci. USA 108, 14312–14317 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • González Ramírez, C. et al. The NR3C1 gene expression is a potential surrogate biomarker for risk and diagnosis of posttraumatic stress disorder. Psychiatry Res. 284, 112797 (2020).

    PubMed 

    Google Scholar 

  • Cluver, L., Fincham, D. S. & Seedat, S. Posttraumatic stress in AIDS-orphaned children exposed to high levels of trauma: the protective role of perceived social support. J. Trauma. Stress 22, 106–112 (2009).

    PubMed 

    Google Scholar 

  • Bastille-Rousseau, G. et al. Landscape-scale habitat response of African elephants shows strong selection for foraging opportunities in a human dominated ecosystem. Ecography 43, 149–160 (2020).

    Google Scholar 

  • Foley, C. A. H., Papageorge, S. & Wasser, S. K. Noninvasive stress and reproductive measures of social and ecological pressures in free-ranging African elephants. Conserv. Biol. 15, 1134–1142 (2001).

    Google Scholar 

  • Wittemyer, G., Getz, W. M., Vollrath, F. & Douglas-Hamilton, I. Social dominance, seasonal movements, and spatial segregation in African elephants: a contribution to conservation behavior. Behav. Ecol. Sociobiol. 61, 1919–1931 (2007).

    Google Scholar 

  • Wittemyer, G., Daballen, D. & Douglas‐Hamilton, I. Differential influence of human impacts on age‐specific demography underpins trends in an African elephant population. Ecosphere 12, e03720 (2021).

  • Brown, J. L. et al. Individual and environmental risk factors associated with fecal glucocorticoid metabolite concentrations in zoo-housed Asian and African elephants. PLoS ONE 14, 1–18 (2019).

    Google Scholar 

  • Goldenberg, S. Z. et al. Increasing conservation translocation success by building social functionality in released populations. Glob. Ecol. Conserv. 18, e00604 (2019).

  • Dantzer, B., Fletcher, Q. E., Boonstra, R. & Sheriff, M. J. Measures of physiological stress: a transparent or opaque window into the status, management and conservation of species? Conserv. Physiol. 2, 1–18 (2014).

    Google Scholar 

  • Kaisin, O., Fuzessy, L., Poncin, P., Brotcorne, F. & Culot, L. A meta-analysis of anthropogenic impacts on physiological stress in wild primates. Conserv. Biol. 0, 1–14 (2020).

    CAS 

    Google Scholar 

  • Ganswindt, A., Rasmussen, H. B., Heistermann, M. & Hodges, J. K. The sexually active states of free-ranging male African elephants (Loxodonta africana): defining musth and non-musth using endocrinology, physical signals, and behavior. Horm. Behav. 47, 83–91 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Santymire, R. M. et al. Using ACTH challenges to validate techniques for adrenocortical activity analysis in various African wildlife species. Int. J. Anim. Vet. Adv. 4, 99–108 (2012).

    CAS 

    Google Scholar 

  • Watson, R. et al. Development of a versatile enzyme immunoassay for non-invasive assessment of glucocorticoid metabolites in a diversity of taxonomic species. Gen. Comp. Endocrinol. 186, 16–24 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Oduor, S. et al. Differing physiological and behavioral responses to anthropogenic factors between resident and non-resident African elephants at Mpala Ranch, Laikipia County, Kenya. PeerJ 8, e10010 (2020).

  • Brown, J. L., Kersey, D. C., Freeman, E. W. & Wagener, T. Assessment of diurnal urinary cortisol excretion in Asian and African elephants using different endocrine methods. Zoo. Biol. 29, 274–283 (2010).

    PubMed 

    Google Scholar 

  • Justice, C. O. et al. The moderate resolution imaging spectroradiometer (MODIS): land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens. 36, 1228–1249 (1998).

    Google Scholar 

  • Lafferty, D. J. R., Zimova, M., Clontz, L., Hackländer, K. & Mills, L. S. Noninvasive measures of physiological stress are confounded by exposure. Sci. Rep. 9, 1–6 (2019).

    Google Scholar 

  • O’Dwyer, K., Dargent, F., Forbes, M. R. & Koprivnikar, J. Parasite infection leads to widespread glucocorticoid hormone increases in vertebrate hosts: a meta-analysis. J. Anim. Ecol. 89, 519–529 (2020).

    PubMed 

    Google Scholar 

  • Parker, J. M., Goldenberg, S. Z., Letitiya, D. & Wittemyer, G. Strongylid infection varies with age, sex, movement and social factors in wild African elephants. Parasitology 147, 348–359 (2020).

    PubMed 

    Google Scholar 

  • Gibbons, L., Jacobs, D. E., Fox, M. T. & Hansen, J. The RVC/FAO guide to veterinary diagnostic parasitology. McMaster egg-counting technique. http://www.rvc.ac.uk/review/Parasitology/EggCount/Purpose.htm (2004)

  • R Core Team. A language and environment for statistical computing. https://www.r-project.org/. (2020).

  • Rstudio Team. RStudio: integrated development for R. http://www.rstudio.com/ (2020).

  • Plummer, M. rjags: Bayesian graphical models using MCMC. https://cran.r-project.org/package=rjags (2019).

  • Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).

    Google Scholar 

  • Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–511 (1992).

    Google Scholar 

  • Wickham, H. ggplot2: elegant graphics for data analysis. https://ggplot2.tidyverse.org (2016).

  • Youngflesh, C. MCMCvis: tools to visualize, manipulate, and summarize MCMC output. J. Open Source Softw. 3, 640 (2018).

    Google Scholar 

  • Parker, J. M. The Physiological Condition of Orphaned African Elephants (Loxodonta africana). Doctoral dissertation, Colorado State University. (2021).


  • Source: Ecology - nature.com

    The influence and acting pattern of China's national carbon emission trading scheme on regional ecologicalization efficiency of industry

    Free hand hitting of stone-like objects in wild gorillas