Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346, 1517–1519 (2014).
Google Scholar
Lute, M. L., Carter, N. H., López-Bao, J. V. & Linnell, J. D. C. Conservation professionals’ views on governing for coexistence with large carnivores. Biol. Cons. 248, 108668 (2020).
Google Scholar
Gantchoff, M. G. & Belant, J. L. Regional connectivity for recolonizing American black bears (Ursus americanus) in southcentral USA. Biol. Cons. 214, 66–75 (2017).
Google Scholar
Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 25 (2014).
Google Scholar
Kays, R. et al. Does hunting or hiking affect wildlife communities in protected areas?. J. Appl. Ecol. 54, 242–252 (2017).
Google Scholar
Schipper, J. et al. The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322, 225–230 (2008).
Google Scholar
Smith, J. A., Wang, Y. & Wilmers, C. C. Top carnivores increase their kill rates on prey as a response to human-induced fear. Proc. R. Soc. B Biol. Sci. 282, 20142711 (2015).
Google Scholar
Stillfried, M., Belant, J. L., Svoboda, N. J., Beyer, D. E. & Kramer-Schadt, S. When top predators become prey: Black bears alter movement behaviour in response to hunting pressure. Behav. Proc. 120, 30–39 (2015).
Google Scholar
Støen, O.-G. et al. Physiological evidence for a human-induced landscape of fear in brown bears (Ursus arctos). Physiol. Behav. 152, 244–248 (2015).
Google Scholar
Evans, M. J., Rittenhouse, T. A. G., Hawley, J. E. & Rego, P. W. Black bear recolonization patterns in a human-dominated landscape vary based on housing: New insights from spatially explicit density models. Landsc. Urban Plan. 162, 13–24 (2017).
Google Scholar
LaRue, M. A. et al. Cougars are recolonizing the midwest: Analysis of cougar confirmations during 1990–2008. J. Wildl. Manag. 76, 1364–1369 (2012).
Google Scholar
Cove, M. V., Fergus, C., Lacher, I., Akre, T. & McShea, W. J. Projecting mammal distributions in response to future alternative landscapes in a rapidly transitioning region. Remote Sens. 11, 2482 (2019).
Google Scholar
Frid, A. & Dill, L. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6, 25 (2002).
Clinchy, M. et al. Fear of the human “super predator” far exceeds the fear of large carnivores in a model mesocarnivore. Behav. Ecol. 27, 1826–1832 (2016).
Suraci, J. P., Clinchy, M., Zanette, L. Y. & Wilmers, C. C. Fear of humans as apex predators has landscape-scale impacts from mountain lions to mice. Ecol. Lett. 22, 1578–1586 (2019).
Google Scholar
Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).
Google Scholar
Smith, J. A., Thomas, A. C., Levi, T., Wang, Y. & Wilmers, C. C. Human activity reduces niche partitioning among three widespread mesocarnivores. Oikos 127, 890–901 (2018).
Google Scholar
Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).
Google Scholar
Carter, N. H., Brown, D. G., Etter, D. R. & Visser, L. G. American black bear habitat selection in northern Lower Peninsula, Michigan, USA, using discrete-choice modeling. Ursus 21, 57–71 (2010).
Google Scholar
Naidoo, R. & Burton, A. C. Relative effects of recreational activities on a temperate terrestrial wildlife assemblage. Conserv. Sci. Pract. 2, e271 (2020).
Geffroy, B., Samia, D. S. M., Bessa, E. & Blumstein, D. T. How nature-based tourism might increase prey vulnerability to predators. Trends Ecol. Evol. 30, 755–765 (2015).
Google Scholar
Geffroy, B. et al. Evolutionary dynamics in the Anthropocene: Life history and intensity of human contact shape antipredator responses. PLoS Biol. 18, e3000818 (2020).
Google Scholar
Beeco, J. A., Hallo, J. C. & Brownlee, M. T. J. GPS visitor tracking and recreation suitability mapping: tools for understanding and managing visitor use. Landsc. Urban Plan. 127, 136–145 (2014).
Google Scholar
Thorsen, N. H. et al. Smartphone app reveals that lynx avoid human recreationists on local scale, but not home range scale. Sci. Rep. 12, 1–13 (2022).
Google Scholar
Evans, M. J., Hawley, J. E., Rego, P. W. & Rittenhouse, T. A. G. Hourly movement decisions indicate how a large carnivore inhabits developed landscapes. Oecologia 190, 11–23 (2019).
Google Scholar
Carlos, A. W. D., Bright, A. D., Teel, T. L. & Vaske, J. J. Human-black bear conflict in urban areas: an integrated approach to management response. Hum. Dimens. Wildl. 14, 174–184 (2009).
Google Scholar
Johnson, H. E. et al. Human development and climate affect hibernation in a large carnivore with implications for human–carnivore conflicts. J. Appl. Ecol. 55, 663–672 (2018).
Google Scholar
Gould, N. P., Powell, R., Olfenbuttel, C. & DePerno, C. S. Growth and reproduction by young urban and rural black bears. J. Mammal. 102, 1165–1173 (2021).
Google Scholar
Ditmer, M. A., Noyce, K. V., Fieberg, J. R. & Garshelis, D. L. Delineating the ecological and geographic edge of an opportunist: The American black bear exploiting an agricultural landscape. Ecol. Model. 387, 205–219 (2018).
Google Scholar
McFadden-Hiller, J. E. Jr. & Belant, J. L. Spatial distribution of black bear incident reports in michigan. PLoS One 11, e0154474 (2016).
Google Scholar
Ladle, A., Steenweg, R., Shepherd, B. & Boyce, M. S. The role of human outdoor recreation in shaping patterns of grizzly bear-black bear co-occurrence. PLoS One 13, e0191730 (2018).
Google Scholar
Wilbur, R. C., Lischka, S. A., Young, J. R. & Johnson, H. E. Experience, attitudes, and demographic factors influence the probability of reporting human–black bear interactions. Wildl. Soc. Bull. 42, 22–31 (2018).
Google Scholar
Lustig, E. J., Lyda, S. B., Leslie, D. M., Luttbeg, B. & Fairbanks, W. S. Resource selection by recolonizing American Black Bears. J. Wildl. Manage. 85, 531–542 (2021).
Google Scholar
Sun, C. C., Fuller, A. K., Hare, M. P. & Hurst, J. E. Evaluating population expansion of black bears using spatial capture-recapture. J. Wildl. Manage. 81, 814–823 (2017).
Google Scholar
Kautz, T. M. et al. Large carnivore response to human road use suggests a landscape of coexistence. Glob. Ecol. Conserv. 30, e01772 (2021).
Google Scholar
Michigan Department of Natural Resources (MIDNR) (2021).
Blount, J. D., Chynoweth, M. W., Green, A. M. & Şekercioğlu, Ç. H. Review: COVID-19 highlights the importance of camera traps for wildlife conservation research and management. Biol. Cons. 256, 108984 (2021).
Google Scholar
Weather Atlas. https://www.weather-atlas.com/en
Evans, J. S. Spatial Analysis and Modelling Utilities. Package ‘spatialEco’. https://cran.r-project.org/web/packages/spatialEco/spatialEco.pdf (2021).
Díaz-Ruiz, F., Caro, J., Delibes-Mateos, M., Arroyo, B. & Ferreras, P. Drivers of red fox (Vulpes vulpes) daily activity: prey availability, human disturbance or habitat structure?. J. Zool. 298, 128–138 (2016).
Google Scholar
Moore, J. F. et al. Comparison of species richness and detection between line transects, ground camera traps, and arboreal camera traps. Anim. Conserv. 23, 561–572 (2020).
Google Scholar
Parsons, A. W. et al. Urbanization focuses carnivore activity in remaining natural habitats, increasing species interactions. J. Appl. Ecol. 56, 1894–1904 (2019).
Google Scholar
Allen, M. L., Sibarani, M. C., Utoyo, L. & Krofel, M. Terrestrial mammal community richness and temporal overlap between tigers and other carnivores in Bukit Barisan Selatan National Park, Sumatra. Anim. Biodiv. Conserv. 43(1), 97–107 (2020).
Google Scholar
Tian, C. et al. Temporal niche patterns of large mammals in Wanglang National Nature Reserve, China. Glob. Ecol. Conserv. 22, e01015 (2020).
Google Scholar
Meredith, M. & Ridout, M. Estimates of coefficient of overlapping for animal activity patterns. Package ‘overlap’. https://cran.r-project.org/web/packages/overlap/overlap.pdf (2020).
RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/ (2021).
Ridout, M. S. & Linkie, M. Estimating overlap of daily activity patterns from camera trap data. JABES 14, 322–337 (2009).
Google Scholar
Lashley, M. A. et al. Estimating wildlife activity curves: comparison of methods and sample size. Sci. Rep. 8, 1–11 (2018).
Google Scholar
Rowcliffe, M. Animal Activity Statistics. Package ‘activity’. https://cran.r-project.org/web/packages/activity/activity.pdf (2021).
MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G. & Franklin, A. B. Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207 (2003).
Google Scholar
Wei, T., & Simko, V. Visualization of a Correlation Matrix. Package ‘corrplot’. https://cran.r-project.org/web/packages/corrplot/corrplot.pdf (2017).
Norton, D. C. et al. Female American black bears do not alter space use or movements to reduce infanticide risk. PLoS One 13, e0203651 (2018).
Google Scholar
Ditmer, M. A. et al. Behavioral and physiological responses of American black bears to landscape features within an agricultural region. Ecosphere 6, 1–21 (2015).
Google Scholar
Clark, D. et al. Using machine learning methods to predict the movement trajectories of the Louisiana black bear. SMU Data Sci. Rev. 5, 25 (2021).
Source: Ecology - nature.com