in

Human recreation impacts seasonal activity and occupancy of American black bears (Ursus americanus) across the anthropogenic-wildland interface

  • Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346, 1517–1519 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lute, M. L., Carter, N. H., López-Bao, J. V. & Linnell, J. D. C. Conservation professionals’ views on governing for coexistence with large carnivores. Biol. Cons. 248, 108668 (2020).

    Article 

    Google Scholar 

  • Gantchoff, M. G. & Belant, J. L. Regional connectivity for recolonizing American black bears (Ursus americanus) in southcentral USA. Biol. Cons. 214, 66–75 (2017).

    Article 

    Google Scholar 

  • Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 25 (2014).

    Article 
    CAS 

    Google Scholar 

  • Kays, R. et al. Does hunting or hiking affect wildlife communities in protected areas?. J. Appl. Ecol. 54, 242–252 (2017).

    Article 

    Google Scholar 

  • Schipper, J. et al. The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322, 225–230 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Smith, J. A., Wang, Y. & Wilmers, C. C. Top carnivores increase their kill rates on prey as a response to human-induced fear. Proc. R. Soc. B Biol. Sci. 282, 20142711 (2015).

    Article 

    Google Scholar 

  • Stillfried, M., Belant, J. L., Svoboda, N. J., Beyer, D. E. & Kramer-Schadt, S. When top predators become prey: Black bears alter movement behaviour in response to hunting pressure. Behav. Proc. 120, 30–39 (2015).

    Article 

    Google Scholar 

  • Støen, O.-G. et al. Physiological evidence for a human-induced landscape of fear in brown bears (Ursus arctos). Physiol. Behav. 152, 244–248 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Evans, M. J., Rittenhouse, T. A. G., Hawley, J. E. & Rego, P. W. Black bear recolonization patterns in a human-dominated landscape vary based on housing: New insights from spatially explicit density models. Landsc. Urban Plan. 162, 13–24 (2017).

    Article 

    Google Scholar 

  • LaRue, M. A. et al. Cougars are recolonizing the midwest: Analysis of cougar confirmations during 1990–2008. J. Wildl. Manag. 76, 1364–1369 (2012).

    Article 

    Google Scholar 

  • Cove, M. V., Fergus, C., Lacher, I., Akre, T. & McShea, W. J. Projecting mammal distributions in response to future alternative landscapes in a rapidly transitioning region. Remote Sens. 11, 2482 (2019).

    ADS 
    Article 

    Google Scholar 

  • Frid, A. & Dill, L. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6, 25 (2002).

    Google Scholar 

  • Clinchy, M. et al. Fear of the human “super predator” far exceeds the fear of large carnivores in a model mesocarnivore. Behav. Ecol. 27, 1826–1832 (2016).

    Google Scholar 

  • Suraci, J. P., Clinchy, M., Zanette, L. Y. & Wilmers, C. C. Fear of humans as apex predators has landscape-scale impacts from mountain lions to mice. Ecol. Lett. 22, 1578–1586 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Smith, J. A., Thomas, A. C., Levi, T., Wang, Y. & Wilmers, C. C. Human activity reduces niche partitioning among three widespread mesocarnivores. Oikos 127, 890–901 (2018).

    Article 

    Google Scholar 

  • Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Carter, N. H., Brown, D. G., Etter, D. R. & Visser, L. G. American black bear habitat selection in northern Lower Peninsula, Michigan, USA, using discrete-choice modeling. Ursus 21, 57–71 (2010).

    Article 

    Google Scholar 

  • Naidoo, R. & Burton, A. C. Relative effects of recreational activities on a temperate terrestrial wildlife assemblage. Conserv. Sci. Pract. 2, e271 (2020).

    Google Scholar 

  • Geffroy, B., Samia, D. S. M., Bessa, E. & Blumstein, D. T. How nature-based tourism might increase prey vulnerability to predators. Trends Ecol. Evol. 30, 755–765 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Geffroy, B. et al. Evolutionary dynamics in the Anthropocene: Life history and intensity of human contact shape antipredator responses. PLoS Biol. 18, e3000818 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Beeco, J. A., Hallo, J. C. & Brownlee, M. T. J. GPS visitor tracking and recreation suitability mapping: tools for understanding and managing visitor use. Landsc. Urban Plan. 127, 136–145 (2014).

    Article 

    Google Scholar 

  • Thorsen, N. H. et al. Smartphone app reveals that lynx avoid human recreationists on local scale, but not home range scale. Sci. Rep. 12, 1–13 (2022).

    Article 
    CAS 

    Google Scholar 

  • Evans, M. J., Hawley, J. E., Rego, P. W. & Rittenhouse, T. A. G. Hourly movement decisions indicate how a large carnivore inhabits developed landscapes. Oecologia 190, 11–23 (2019).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Carlos, A. W. D., Bright, A. D., Teel, T. L. & Vaske, J. J. Human-black bear conflict in urban areas: an integrated approach to management response. Hum. Dimens. Wildl. 14, 174–184 (2009).

    Article 

    Google Scholar 

  • Johnson, H. E. et al. Human development and climate affect hibernation in a large carnivore with implications for human–carnivore conflicts. J. Appl. Ecol. 55, 663–672 (2018).

    Article 

    Google Scholar 

  • Gould, N. P., Powell, R., Olfenbuttel, C. & DePerno, C. S. Growth and reproduction by young urban and rural black bears. J. Mammal. 102, 1165–1173 (2021).

    Article 

    Google Scholar 

  • Ditmer, M. A., Noyce, K. V., Fieberg, J. R. & Garshelis, D. L. Delineating the ecological and geographic edge of an opportunist: The American black bear exploiting an agricultural landscape. Ecol. Model. 387, 205–219 (2018).

    Article 

    Google Scholar 

  • McFadden-Hiller, J. E. Jr. & Belant, J. L. Spatial distribution of black bear incident reports in michigan. PLoS One 11, e0154474 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Ladle, A., Steenweg, R., Shepherd, B. & Boyce, M. S. The role of human outdoor recreation in shaping patterns of grizzly bear-black bear co-occurrence. PLoS One 13, e0191730 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wilbur, R. C., Lischka, S. A., Young, J. R. & Johnson, H. E. Experience, attitudes, and demographic factors influence the probability of reporting human–black bear interactions. Wildl. Soc. Bull. 42, 22–31 (2018).

    Article 

    Google Scholar 

  • Lustig, E. J., Lyda, S. B., Leslie, D. M., Luttbeg, B. & Fairbanks, W. S. Resource selection by recolonizing American Black Bears. J. Wildl. Manage. 85, 531–542 (2021).

    Article 

    Google Scholar 

  • Sun, C. C., Fuller, A. K., Hare, M. P. & Hurst, J. E. Evaluating population expansion of black bears using spatial capture-recapture. J. Wildl. Manage. 81, 814–823 (2017).

    Article 

    Google Scholar 

  • Kautz, T. M. et al. Large carnivore response to human road use suggests a landscape of coexistence. Glob. Ecol. Conserv. 30, e01772 (2021).

    Article 

    Google Scholar 

  • Michigan Department of Natural Resources (MIDNR) (2021).

  • Blount, J. D., Chynoweth, M. W., Green, A. M. & Şekercioğlu, Ç. H. Review: COVID-19 highlights the importance of camera traps for wildlife conservation research and management. Biol. Cons. 256, 108984 (2021).

    Article 

    Google Scholar 

  • Weather Atlas. https://www.weather-atlas.com/en

  • Evans, J. S. Spatial Analysis and Modelling Utilities. Package ‘spatialEco’. https://cran.r-project.org/web/packages/spatialEco/spatialEco.pdf (2021).

  • Díaz-Ruiz, F., Caro, J., Delibes-Mateos, M., Arroyo, B. & Ferreras, P. Drivers of red fox (Vulpes vulpes) daily activity: prey availability, human disturbance or habitat structure?. J. Zool. 298, 128–138 (2016).

    Article 

    Google Scholar 

  • Moore, J. F. et al. Comparison of species richness and detection between line transects, ground camera traps, and arboreal camera traps. Anim. Conserv. 23, 561–572 (2020).

    Article 

    Google Scholar 

  • Parsons, A. W. et al. Urbanization focuses carnivore activity in remaining natural habitats, increasing species interactions. J. Appl. Ecol. 56, 1894–1904 (2019).

    Article 

    Google Scholar 

  • Allen, M. L., Sibarani, M. C., Utoyo, L. & Krofel, M. Terrestrial mammal community richness and temporal overlap between tigers and other carnivores in Bukit Barisan Selatan National Park, Sumatra. Anim. Biodiv. Conserv. 43(1), 97–107 (2020).

    Article 

    Google Scholar 

  • Tian, C. et al. Temporal niche patterns of large mammals in Wanglang National Nature Reserve, China. Glob. Ecol. Conserv. 22, e01015 (2020).

    Article 

    Google Scholar 

  • Meredith, M. & Ridout, M. Estimates of coefficient of overlapping for animal activity patterns. Package ‘overlap’. https://cran.r-project.org/web/packages/overlap/overlap.pdf (2020).

  • RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/ (2021).

  • Ridout, M. S. & Linkie, M. Estimating overlap of daily activity patterns from camera trap data. JABES 14, 322–337 (2009).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Lashley, M. A. et al. Estimating wildlife activity curves: comparison of methods and sample size. Sci. Rep. 8, 1–11 (2018).

    CAS 
    Article 

    Google Scholar 

  • Rowcliffe, M. Animal Activity Statistics. Package ‘activity’. https://cran.r-project.org/web/packages/activity/activity.pdf (2021).

  • MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G. & Franklin, A. B. Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207 (2003).

    Article 

    Google Scholar 

  • Wei, T., & Simko, V. Visualization of a Correlation Matrix. Package ‘corrplot’. https://cran.r-project.org/web/packages/corrplot/corrplot.pdf (2017).

  • Norton, D. C. et al. Female American black bears do not alter space use or movements to reduce infanticide risk. PLoS One 13, e0203651 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Ditmer, M. A. et al. Behavioral and physiological responses of American black bears to landscape features within an agricultural region. Ecosphere 6, 1–21 (2015).

    Article 

    Google Scholar 

  • Clark, D. et al. Using machine learning methods to predict the movement trajectories of the Louisiana black bear. SMU Data Sci. Rev. 5, 25 (2021).

    Google Scholar 


  • Source: Ecology - nature.com

    Explained: Why perovskites could take solar cells to new heights

    Vertebrate growth plasticity in response to variation in a mutualistic interaction