in

Harnessing the microbiome to prevent global biodiversity loss

  • Rockström, J. et al. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 461, 472–475 (2009).

  • Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wake, D. B. & Vredenburg, V. T. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl Acad. Sci. USA 105, 11466–11473 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sweet, M., Burian, A. & Bulling, M. Corals as canaries in the coalmine: towards the incorporation of marine ecosystems into the ‘One Health’ concept. J. Invertebr. Pathol. 186, 107538 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Flandroy, L. et al. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci. Total Environ. 627, 1018–1038 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Loreau, M. & de Mazancourt, C. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Doering, T. et al. Towards enhancing coral heat tolerance: a ‘microbiome transplantation’ treatment using inoculations of homogenized coral tissues. Microbiome 9, 102 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rosado, P. M. et al. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME J. 13, 921–936 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Santos, H. F. et al. Impact of oil spills on coral reefs can be reduced by bioremediation using probiotic microbiota. Sci. Rep. 5, 18268 (2015).

    Article 
    CAS 

    Google Scholar 

  • Santoro, E. P. et al. Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. Sci. Adv. 7, eabg3088 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Silva, D. P. et al. Multi-domain probiotic consortium as an alternative to chemical remediation of oil spills at coral reefs and adjacent sites. Microbiome 9, 118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hoyt, J. R. et al. Field trial of a probiotic bacteria to protect bats from white-nose syndrome. Sci. Rep. 9, 9158 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Bletz, M. C. et al. Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective probiotics and strategies for their selection and use. Ecol. Lett. 16, 807–820 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Daisley, B. A. et al. Lactobacillus spp. attenuate antibiotic-induced immune and microbiota dysregulation in honey bees. Commun. Biol. 3, 534 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Powell, J. E., Carver, Z., Leonard, S. P. & Moran, N. A. Field-realistic tylosin exposure impacts honey bee microbiota and pathogen susceptibility, which is ameliorated by native gut probiotics. Microbiol. Spectr. 9, e0010321 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Borges, D., Guzman-Novoa, E. & Goodwin, P. H. Effects of prebiotics and probiotics on honey bees (Apis mellifera) infected with the microsporidian parasite Nosema ceranae. Microorganisms 9, 481 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Daisley, B. A. et al. Novel probiotic approach to counter Paenibacillus larvae infection in honey bees. ISME J. 14, 476–491 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Trinder, M. et al. Probiotic Lactobacillus rhamnosus reduces organophosphate pesticide absorption and toxicity to Drosophila melanogaster. Appl. Environ. Microbiol. 82, 6204–6213 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Enquist, B. J., Abraham, A. J., Harfoot, M. B. J., Malhi, Y. & Doughty, C. E. The megabiota are disproportionately important for biosphere functioning. Nat. Commun. 11, 699 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Knowlton, N. et al. Rebuilding Coral Reefs: A Decadal Grand Challenge. (International Coral Reef Society, Future Earth Coasts, 2021).

  • Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jaspers, C. et al. Resolving structure and function of metaorganisms through a holistic framework combining reductionist and integrative approaches. Zoology 133, 81–87 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Bosch, T. C. G. & McFall-Ngai, M. J. Metaorganisms as the new frontier. Zoology 114, 185–190 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Wilkins, L. G. E. et al. Host-associated microbiomes and their roles in marine ecosystem functions. PLoS Biol. 17, e3000533 (2019).

  • Humphreys, C. P. et al. Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nat. Commun. 1, 103 (2010).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Koskella, B. & Bergelson, J. The study of host-microbiome (co)evolution across levels of selection. Phil. Trans. R. Soc. Lond. B 375, 20190604 (2020).

    Article 

    Google Scholar 

  • Keller-Costa, T. et al. Metagenomic insights into the taxonomy, function, and dysbiosis of prokaryotic communities in octocorals. Microbiome 9, 72 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Guerra, C. A. et al. Global projections of the soil microbiome in the Anthropocene. Glob. Ecol. Biogeogr. 30, 987–999 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Weinbauer, M. G. & Rassoulzadegan, F. Extinction of microbes: evidence and potential consequences. Endanger. Species Res. 3, 205–215 (2007).

    Article 

    Google Scholar 

  • Petersen, C. & Round, J. L. Defining dysbiosis and its influence on host immunity and disease. Cell. Microbiol. 16, 1024–1033 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hanski, I. et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc. Natl Acad. Sci. USA 109, 8334–8339 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Blaser, M. J. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat. Rev. Immunol. 17, 461–463 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Balbín-Suárez, A. et al. Root exposure to apple replant disease soil triggers local defense response and rhizoplane microbiome dysbiosis. FEMS Microbiol. Ecol. 97, fiab031 (2021).

  • Erlacher, A., Cardinale, M., Grosch, R., Grube, M. & Berg, G. The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Front. Microbiol. 5, 175 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shahi, F., Redeker, K. & Chong, J. Rethinking antimicrobial stewardship paradigms in the context of the gut microbiome. JAC Antimicrob. Resist. 1, dlz015 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Voolstra, C. R. & Ziegler, M. Adapting with microbial help: microbiome flexibility facilitates rapid responses to environmental change. Bioessays 42, e2000004 (2020).

    PubMed 
    Article 

    Google Scholar 

  • McBurney, M. I. et al. Establishing what constitutes a healthy human gut microbiome: state of the science, regulatory considerations, and future directions. J. Nutr. 149, 1882–1895 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Voolstra, C. R. et al. Extending the natural adaptive capacity of coral holobionts. Nat. Rev. Earth Environ. 2, 747–762 (2021).

    Article 

    Google Scholar 

  • Woodhams, D. C. et al. Prodigiosin, violacein, and volatile organic compounds produced by widespread cutaneous bacteria of amphibians can inhibit two Batrachochytrium fungal pathogens. Microb. Ecol. 75, 1049–1062 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Voyles, J. et al. Shifts in disease dynamics in a tropical amphibian assemblage are not due to pathogen attenuation. Science 359, 1517–1519 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Harris, R. N. et al. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 3, 818–824 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Peixoto, R. S., Harkins, D. M. & Nelson, K. E. Advances in microbiome research for animal health. Annu. Rev. Anim. Biosci. 9, 289–311 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Blanck, H. & Wängberg, S.-Å. Induced community tolerance in marine periphyton established under arsenate stress. Can. J. Fish. Aquat. Sci. 45, 1816–1819 (1988).

    Article 

    Google Scholar 

  • French, E., Kaplan, I., Iyer-Pascuzzi, A., Nakatsu, C. H. & Enders, L. Emerging strategies for precision microbiome management in diverse agroecosystems. Nat. Plants 7, 256–267 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Borges, N. et al. Bacteriome structure, function, and probiotics in fish larviculture: the good, the bad, and the gaps. Annu. Rev. Anim. Biosci. 9, 423–452 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • De Schryver, P. & Vadstein, O. Ecological theory as a foundation to control pathogenic invasion in aquaculture. ISME J. 8, 2360–2368 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sonnenschein, E. C., Jimenez, G., Castex, M. & Gram, L. The Roseobacter-group bacterium Phaeobacter as a safe probiotic solution for aquaculture. Appl. Environ. Microbiol. 87, e0258120 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Peixoto, R. S., Sweet, M. & Bourne, D. G. Customized medicine for corals. Front. Mar. Sci. 6, 686 (2019).

  • Quraishi, M. N. et al. Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment. Pharmacol. Ther. 46, 479–493 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Henrick, B. M. et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 184, 3884–3898.e11 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Freedman, S. B. et al. Multicenter trial of a combination probiotic for children with gastroenteritis. N. Engl. J. Med. 379, 2015–2026 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cabana, M. D. et al. Early probiotic supplementation for eczema and asthma prevention: a randomized controlled trial. Pediatrics 140, e20163000 (2017).

  • Matsumoto, H. et al. Bacterial seed endophyte shapes disease resistance in rice. Nat. Plants 7, 60–72 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • D’Alvise, P. W. et al. Phaeobacter gallaeciensis reduces Vibrio anguillarum in cultures of microalgae and rotifers, and prevents vibriosis in cod larvae. PLoS ONE 7, e43996 (2012).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Dittmann, K. K. et al. Changes in the microbiome of mariculture feed organisms after treatment with a potentially probiotic strain of Phaeobacter inhibens. Appl. Environ. Microbiol. 86, e00499-20 (2020).

  • Metchnikoff, E. The Prolongation of Life: Optimistic Studies (Heinemann, 1907).

  • Khanna, S., Jones, C., Jones, L., Bushman, F. & Bailey, A. Increased microbial diversity found in successful versus unsuccessful recipients of a next-generation FMT for recurrent Clostridium difficile infection. Open Forum Infect. Dis 5, 304–309(2015).

  • Kachrimanidou, M. & Tsintarakis, E. Insights into the role of human gut microbiota in Clostridioides difficile infection. Microorganisms 8, 200 (2020).

  • Aggarwala, V. et al. Precise quantification of bacterial strains after fecal microbiota transplantation delineates long-term engraftment and explains outcomes. Nat. Microbiol. 6, 1309–1318 (2021).

  • Zachow, C., Müller, H., Tilcher, R., Donat, C. & Berg, G. Catch the best: novel screening strategy to select stress protecting agents for crop plants. Agronomy 3, 794–815 (2013).

    Article 
    CAS 

    Google Scholar 

  • Berg, G., Kusstatscher, P., Abdelfattah, A., Cernava, T. & Smalla, K. Microbiome modulation-toward a better understanding of plant microbiome response to microbial inoculants. Front. Microbiol. 12, 650610 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ehlers, R.-U. in Regulation of Biological Control Agents (ed. Ehlers, R.-U.) 3–23 (Springer Netherlands, 2011).

  • CDC. V-Safe After Vaccination Health Checker https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/vsafe.html (2022).

  • Bok, K., Sitar, S., Graham, B. S. & Mascola, J. R. Accelerated COVID-19 vaccine development: milestones, lessons, and prospects. Immunity 54, 1636–1651 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vestal, R. Fecal microbiota transplant. Hosp. Med. Clin. 5, 58–70 (2016).

    Article 

    Google Scholar 

  • Jansen, J. W. Fecal microbiota transplant vs oral vancomycin taper: important undiscussed limitations. Clin. Infect. Dis. 64, 1292–1293 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Basson, A. R., Zhou, Y., Seo, B., Rodriguez-Palacios, A. & Cominelli, F. Autologous fecal microbiota transplantation for the treatment of inflammatory bowel disease. Transl. Res. 226, 1–11 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • DeFilipp, Z. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381, 2043–2050 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Slatko, B. E., Luck, A. N., Dobson, S. L. & Foster, J. M. Wolbachia endosymbionts and human disease control. Mol. Biochem. Parasitol. 195, 88–95 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ahantarig, A. & Kittayapong, P. Endosymbiotic Wolbachia bacteria as biological control tools of disease vectors and pests. J. Appl. Entomol. 135, 479–486 (2011).

    Article 

    Google Scholar 

  • Turner, J. et al. Extreme temperatures in the Antarctic. J. Clim. 34, 2653–2668 (2021).

    Article 

    Google Scholar 

  • Schoennagel, T. et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl Acad. Sci. USA 114, 4582–4590 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Di Virgilio, G. et al. Climate change increases the potential for extreme wildfires. Geophys. Res. Lett. 46, 8517–8526 (2019).

    Article 

    Google Scholar 

  • Liu, Y., Stanturf, J. & Goodrick, S. Trends in global wildfire potential in a changing climate. Ecol. Manage. 259, 685–697 (2010).

    Article 

    Google Scholar 

  • Zhou, J. et al. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc. Natl Acad. Sci. USA 111, E836–E845 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wittebole, X., De Roock, S. & Opal, S. M. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 5, 226–235 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Sieiro, C. et al. A hundred years of bacteriophages: can phages replace antibiotics in agriculture and aquaculture? Antibiotics 9, 493 (2020).

  • Rulkens, W. Increasing the environmental sustainability of sewage treatment by mitigating pollutant pathways. Environ. Eng. Sci. 23, 650–665 (2006).

  • Obotey Ezugbe, E. & Rathilal, S. Membrane technologies in wastewater treatment: a review. Membranes 10, 89 (2020).

  • Lee, C. S., Robinson, J. & Chong, M. F. A review on application of flocculants in wastewater treatment. Process Saf. Environ. Prot. 92, 489–508 (2014).

  • Guo, W.-Q., Yang, S.-S., Xiang, W.-S., Wang, X.-J. & Ren, N.-Q. Minimization of excess sludge production by in-situ activated sludge treatment processes–a comprehensive review. Biotechnol. Adv. 31, 1386–1396 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Alvarez-Filip, L., Estrada-Saldívar, N., Pérez-Cervantes, E., Molina-Hernández, A. & González-Barrios, F. J. A rapid spread of the stony coral tissue loss disease outbreak in the Mexican Caribbean. PeerJ 7, e8069 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Meiling, S. S. et al. Variable species responses to experimental stony coral tissue loss disease (SCTLD) exposure. Front. Mar. Sci. 8, 670829 (2021).

  • Hunt, P. R. The C. elegans model in toxicity testing. J. Appl. Toxicol. 37, 50–59 (2017).

  • Tkaczyk, A., Bownik, A., Dudka, J., Kowal, K. & Ślaska, B. Daphnia magna model in the toxicity assessment of pharmaceuticals: a review. Sci. Total Environ. 763, 143038 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Microbiota Vault. A Vault for Humanity https://www.microbiotavault.org/ (2021).

  • Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria (FAO, WHO, 2001).

  • Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R. & Rastall, R. A. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 16, 605–616 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Gibson, G. R. et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Salminen, S. et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18, 649–667 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liu, A. et al. Adjunctive probiotics alleviates asthmatic symptoms via modulating the gut microbiome and serum metabolome. Microbiol. Spectr. 9, e0085921 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Bagga, D. et al. Probiotics drive gut microbiome triggering emotional brain signatures. Gut Microbes 9, 486–496 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patel, R. M. & Underwood, M. A. Probiotics and necrotizing enterocolitis. Semin. Pediatr. Surg. 27, 39–46 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Tobias, J. et al. Bifidobacterium longum subsp. infantis EVC001 administration is associated with a significant reduction in the incidence of necrotizing enterocolitis in very low birth weight infants. J. Pediatr. https://doi.org/10.1016/j.jpeds.2021.12.070 (2022).

  • Koziol, L. et al. The plant microbiome and native plant restoration: the example of native mycorrhizal fungi. Bioscience 68, 996–1006 (2018).

    Article 

    Google Scholar 

  • Cabello, F. C. et al. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ. Microbiol. 15, 1917–1942 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Evensen, Ø. & Leong, J.-A. C. DNA vaccines against viral diseases of farmed fish. Fish. Shellfish Immunol. 35, 1751–1758 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Burridge, L., Weis, J. S., Cabello, F., Pizarro, J. & Bostick, K. Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture 306, 7–23 (2010).

    CAS 
    Article 

    Google Scholar 

  • Kesarcodi-Watson, A., Kaspar, H., Lategan, M. J. & Gibson, L. Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 274, 1–14 (2008).

    Article 

    Google Scholar 

  • Irianto, A. & Austin, B. Probiotics in aquaculture. J. Fish. Dis. 25, 633–642 (2002).

    Article 

    Google Scholar 

  • Assefa, A. & Abunna, F. Maintenance of fish health in aquaculture: review of epidemiological approaches for prevention and control of infectious disease of fish. Vet. Med. Int. 2018, 5432497 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Hoseinifar, S. H., Sun, Y.-Z., Wang, A. & Zhou, Z. Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front. Microbiol. 9, 2429 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Castex, M., Leclercq, E., Lemaire, P. & Chim, L. Dietary probiotic Pediococcus acidilactici MA18/5M improves the growth, feed performance and antioxidant status of penaeid shrimp Litopenaeus stylirostris: a growth-ration-size approach. Animals 11, 3451 (2021).

  • Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).

  • Daisley, B. A., Chmiel, J. A., Pitek, A. P., Thompson, G. J. & Reid, G. Missing microbes in bees: how systematic depletion of key symbionts erodes immunity. Trends Microbiol. 28, 1010–1021 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chmiel, J. A., Daisley, B. A., Burton, J. P. & Reid, G. Deleterious effects of neonicotinoid pesticides on Drosophila melanogaster immune pathways. Mbio 10, e01395-19 (2019).

  • Daisley, B. A. et al. Microbiota-mediated modulation of organophosphate insecticide toxicity by species-dependent interactions with lactobacilli in a Drosophila melanogaster insect model. Appl. Environ. Microbiol. 84, e02820-17 (2018).

  • Duarte, G. A. S. et al. Heat waves are a major threat to turbid coral reefs in Brazil. Front. Mar. Sci. 7, 179 (2020).

  • Hughes, T. P. et al. Global warming impairs stock-recruitment dynamics of corals. Nature 568, 387–390 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Barno, A. R., Villela, H. D. M., Aranda, M., Thomas, T. & Peixoto, R. S. Host under epigenetic control: a novel perspective on the interaction between microorganisms and corals. Bioessays 43, e2100068 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Welsh, R. M. et al. Alien vs. predator: bacterial challenge alters coral microbiomes unless controlled by Halobacteriovorax predators. PeerJ 5, e3315 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Peixoto, R. S. et al. Coral probiotics: premise, promise, prospects. Annu. Rev. Anim. Biosci. 9, 265–288 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Peixoto, R. S. et al. Beneficial Microorganisms for Corals (BMC): proposed mechanisms for coral health and resilience. Front. Microbiol. 8, 341 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Morgans, C. A., Hung, J. Y. & Bourne, D. G. Symbiodiniaceae probiotics for use in bleaching recovery. Restoration 28, 282–288 (2020).

  • Zhang, Y. et al. Shifting the microbiome of a coral holobiont and improving host physiology by inoculation with a potentially beneficial bacterial consortium. BMC Microbiol. 21, 130 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Assis, J. M. et al. Delivering beneficial microorganisms for corals: rotifers as carriers of probiotic bacteria. Front. Microbiol. 11, 608506 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhou, G. et al. Changes in microbial communities, photosynthesis and calcification of the coral Acropora gemmifera in response to ocean acidification. Sci. Rep. 6, 35971 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • VanCompernolle, S. E. et al. Antimicrobial peptides from amphibian skin potently inhibit human immunodeficiency virus infection and transfer of virus from dendritic cells to T cells. J. Virol. 79, 11598–11606 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Harris, R. N., Lauer, A., Simon, M. A., Banning, J. L. & Alford, R. A. Addition of antifungal skin bacteria to salamanders ameliorates the effects of chytridiomycosis. Dis. Aquat. Organ. 83, 11–16 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Loudon, A. H. et al. Interactions between amphibians’ symbiotic bacteria cause the production of emergent anti-fungal metabolites. Front. Microbiol. 5, 441 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Muletz-Wolz, C. R. et al. Inhibition of fungal pathogens across genotypes and temperatures by amphibian skin bacteria. Front. Microbiol. 8, 1551 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jin Song, S. et al. Engineering the microbiome for animal health and conservation. Exp. Biol. Med. 244, 494–504 (2019).

    CAS 
    Article 

    Google Scholar 

  • Küng, D. et al. Stability of microbiota facilitated by host immune regulation: informing probiotic strategies to manage amphibian disease. PLoS ONE 9, e87101 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Micalizzi, E. W. & Smith, M. L. Volatile organic compounds kill the white-nose syndrome fungus, Pseudogymnoascus destructans, in hibernaculum sediment. Can. J. Microbiol. 66, 593–599 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gabriel, K. T., Joseph Sexton, D. & Cornelison, C. T. Biomimicry of volatile-based microbial control for managing emerging fungal pathogens. J. Appl. Microbiol. 124, 1024–1031 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Woodhams, D. C., Bletz, M., Kueneman, J. & McKenzie, V. Managing amphibian disease with skin microbiota. Trends Microbiol. 24, 161–164 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Silk offers an alternative to some microplastics

    Thermodynamic basis for the demarcation of Arctic and alpine treelines