in

Farm size affects the use of agroecological practices on organic farms in the United States

  • Wanger, T. C. et al. Integrating agroecological production in a robust post-2020 Global Biodiversity Framework. Nat. Ecol. Evol. 4, 1150–1152 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Amundson, R. et al. Soil and human security in the 21st century. Science 348, 1261071 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Robertson, G. P. & Vitousek, P. M. Nitrogen in agriculture: balancing the cost of an essential resource. Annu. Rev. Environ. Resour. 34, 97–125 (2009).

    Article 

    Google Scholar 

  • Campbell, B. M. et al. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 22, 8 (2017).

    Article 

    Google Scholar 

  • Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Krebs, A. V. The Corporate Reapers: The Book of Agribusiness (Essential Books, 1992).

  • Mortensen, D. A. & Smith, R. G. Confronting barriers to cropping system diversification. Front. Sustain. Food Syst. 4, 564197 (2020).

    Article 

    Google Scholar 

  • 2017 Census of Agriculture – 2019 Organic Survey (USDA NASS, 2020); https://www.nass.usda.gov/Publications/AgCensus/2017/index.php

  • Farms and Land in Farms 2019 Summary (USDA NASS, 2020); https://usda.library.cornell.edu/concern/publications/5712m6524

  • Reganold, J. P. & Wachter, J. M. Organic agriculture in the twenty-first century. Nat. Plants 2, 15221 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Muller, A. et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 8, 1290 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Lori, M., Symnaczik, S., Mäder, P., De Deyn, G. & Gattinger, A. Organic farming enhances soil microbial abundance and activity—a meta-analysis and meta-regression. PLoS ONE 12, e0180442 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Seufert, V. & Ramankutty, N. Many shades of gray—the context-dependent performance of organic agriculture. Sci. Adv. 3, e1602638 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • USDA AMS. National Organic Program; Final Rule, 7 CFR Part 205. Fed. Regist. 65, 80547–80684 (2000).

    Google Scholar 

  • Wezel, A. et al. Agroecology as a science, a movement and a practice. A review. Agron. Sustain. Dev. 29, 503–515 (2009).

    Article 

    Google Scholar 

  • Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kleijn, D. et al. Ecological intensification: bridging the gap between science and practice. Trends Ecol. Evol. 34, 154–166 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Kremen, C. & Miles, A. Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol. Soc. 17, 40 (2012).

    Google Scholar 

  • Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2, 284–293 (2020).

    Article 

    Google Scholar 

  • Wood, S. A. et al. Functional traits in agriculture: agrobiodiversity and ecosystem services. Trends Ecol. Evol. 30, 531–539 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Faucon, M.-P., Houben, D. & Lambers, H. Plant functional traits: soil and ecosystem services. Trends Plant Sci. 22, 385–394 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • D’Hose, T. et al. The positive relationship between soil quality and crop production: a case study on the effect of farm compost application. Appl. Soil Ecol. 75, 189–198 (2014).

    Article 

    Google Scholar 

  • Fließbach, A., Oberholzer, H.-R., Gunst, L. & Mäder, P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Environ. 118, 273–284 (2007).

    Article 

    Google Scholar 

  • Francioli, D. et al. Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 7, 1446 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nunes, M. R., Karlen, D. L., Veum, K. S., Moorman, T. B. & Cambardella, C. A. Biological soil health indicators respond to tillage intensity: a US meta-analysis. Geoderma 369, 114335 (2020).

    CAS 
    Article 

    Google Scholar 

  • Blanco-Canqui, H. & Ruis, S. J. No-tillage and soil physical environment. Geoderma 326, 164–200 (2018).

    Article 

    Google Scholar 

  • Willekens, K., Vandecasteele, B., Buchan, D. & De Neve, S. Soil quality is positively affected by reduced tillage and compost in an intensive vegetable cropping system. Appl. Soil Ecol. 82, 61–71 (2014).

    Article 

    Google Scholar 

  • Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Albrecht, M. et al. The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecol. Lett. 23, 1488–1498 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chaplin-Kramer, R., de Valpine, P., Mills, N. J. & Kremen, C. Detecting pest control services across spatial and temporal scales. Agric. Ecosyst. Environ. 181, 206–212 (2013).

    Article 

    Google Scholar 

  • Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl Acad. Sci. USA 115, E7863–E7870 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, X., Liu, X., Zhang, M., Dahlgren, R. A. & Eitzel, M. A review of vegetated buffers and a meta-analysis of their mitigation efficacy in reducing nonpoint source pollution. J. Environ. Qual. 39, 76–84 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Eyhorn, F. et al. Sustainability in global agriculture driven by organic farming. Nat. Sustain. 2, 253–255 (2019).

    Article 

    Google Scholar 

  • Buck, D., Getz, C. & Guthman, J. From farm to table: the organic vegetable commodity chain of northern California. Sociol. Rural. 37, 3–20 (1997).

    Article 

    Google Scholar 

  • Guthman, J. Raising organic: an agro-ecological assessment of grower practices in California. Agric. Hum. Values 17, 257–266 (2000).

    Article 

    Google Scholar 

  • Guthman, J. The trouble with ‘organic lite’ in California: a rejoinder to the ‘conventionalisation’ debate. Sociol. Rural. 44, 301–316 (2004).

    Article 

    Google Scholar 

  • Darnhofer, I., Lindenthal, T., Bartel-Kratochvil, R. & Zollitsch, W. Conventionalisation of organic farming practices: from structural criteria towards an assessment based on organic principles. A review. Agron. Sustain. Dev. 30, 67–81 (2010).

    Article 

    Google Scholar 

  • Constance, D. H., Choi, J. Y. & Lyke-Ho-Gland, H. Conventionalization, bifurcation, and quality of life: certified and non-certified organic farmers in Texas. J. Rural Soc. Sci. 23, 208–234 (2008).

    Google Scholar 

  • 2017 Census of Agriculture – United States Summary and State Data (USDA NASS, 2019); https://www.nass.usda.gov/Publications/AgCensus/2017/index.php

  • 2017 Census of Agriculture: Characteristics of All Farms and Farms with Organic Sales (USDA NASS, 2019); https://www.nass.usda.gov/Publications/AgCensus/2017/index.php

  • Ponisio, L. C. et al. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B 282, 20141396 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wezel, A. et al. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 34, 1–20 (2014).

    Article 

    Google Scholar 

  • Gomiero, T., Pimentel, D. & Paoletti, M. G. Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Crit. Rev. Plant Sci. 30, 95–124 (2011).

    Article 

    Google Scholar 

  • Tittonell, P. et al. Agroecology in large scale farming—a research agenda. Front. Sustain. Food Syst. 4, 584605 (2020).

    Article 

    Google Scholar 

  • Haan, N. L., Zhang, Y. & Landis, D. A. Predicting landscape configuration effects on agricultural pest suppression. Trends Ecol. Evol. 35, 175–186 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Martin, E. A., Seo, B., Park, C.-R., Reineking, B. & Steffan-Dewenter, I. Scale-dependent effects of landscape composition and configuration on natural enemy diversity, crop herbivory, and yields. Ecol. Appl. 26, 448–462 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes – eight hypotheses. Biol. Rev. 87, 661–685 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Olimpi, E. M. et al. Evolving food safety pressures in California’s central coast region. Front. Sustain. Food Syst. 3, 102 (2019).

    Article 

    Google Scholar 

  • Karp, D. S. et al. The unintended ecological and social impacts of food safety regulations in California’s central coast region. BioScience 65, 1173–1183 (2015).

    Article 

    Google Scholar 

  • Bovay, J., Ferrier, P. & Zhen, C. Estimated Costs for Fruit and Vegetable Producers To Comply With the Food Safety Modernization Act’s Produce Rule, EIB-195 (U.S. Department of Agriculture, Economic Research Service, 2018).

  • Coombes, B. & Campbell, H. Dependent reproduction of alternative modes of agriculture: organic farming in New Zealand. Sociol. Rural. 38, 127–145 (1998).

    Article 

    Google Scholar 

  • Hughner, R. S., McDonagh, P., Prothero, A., Shultz, C. J. & Stanton, J. Who are organic food consumers? A compilation and review of why people purchase organic food. J. Consum. Behav. 6, 94–110 (2007).

    Article 

    Google Scholar 

  • Smith, E. & Marsden, T. Exploring the ‘limits to growth’ in UK organics: beyond the statistical image. J. Rural Stud. 20, 345–357 (2004).

    Article 

    Google Scholar 

  • Howard, P. H. Concentration and Power in the Food System: Who Controls What We Eat? (Bloomsbury, 2016).

  • Arcuri, A. The transformation of organic regulation: the ambiguous effects of publicization. Regul. Gov. 9, 144–159 (2015).

    Article 

    Google Scholar 

  • Seufert, V., Ramankutty, N. & Mayerhofer, T. What is this thing called organic? – How organic farming is codified in regulations. Food Policy 68, 10–20 (2017).

    Article 

    Google Scholar 

  • Guthman, J. in Alternative Food Politics: From the Margins to the Mainstream (eds. Phillipov, M. & Kirkwood, K.) 23–36 (Routledge, 2019).

  • Jaffee, D. & Howard, P. H. Corporate cooptation of organic and fair trade standards. Agric. Hum. Values 27, 387–399 (2010).

    Article 

    Google Scholar 

  • Campbell, H. & Rosin, C. After the ‘organic industrial complex’: an ontological expedition through commercial organic agriculture in New Zealand. J. Rural Stud. 27, 350–361 (2011).

    Article 

    Google Scholar 

  • Lockie, S. & Halpin, D. The ‘conventionalisation’ thesis reconsidered: structural and ideological transformation of Australian organic agriculture. Sociol. Rural. 45, 284–307 (2005).

    Article 

    Google Scholar 

  • Prokopy, L. S. et al. Adoption of agricultural conservation practices in the United States: evidence from 35 years of quantitative literature. J. Soil Water Conserv. 74, 520–534 (2019).

    Article 

    Google Scholar 

  • Pretty, J. et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 1, 441–446 (2018).

    Article 

    Google Scholar 

  • Gliessman, S. Transforming food systems with agroecology. Agroecol. Sustain. Food Syst. 40, 187–189 (2016).

    Article 

    Google Scholar 

  • Hill, S. B. Redesigning the food system for sustainability. Alternatives 12, 32–36 (1985).

    Google Scholar 

  • Padel, S., Levidow, L. & Pearce, B. UK farmers’ transition pathways towards agroecological farm redesign: evaluating explanatory models. Agroecol. Sustain. Food Syst. 44, 139–163 (2020).

    Article 

    Google Scholar 

  • Esquivel, K. E. et al. The ‘sweet spot’ in the middle: why do mid-scale farms adopt diversification practices at higher rates? Front. Sustain. Food Syst. 5, 734088 (2021).

    Article 

    Google Scholar 

  • Brislen, L. Meeting in the middle: scaling-up and scaling-over in alternative food networks. Cult. Agric. Food Environ. 40, 105–113 (2018).

    Article 

    Google Scholar 

  • De Master, K. New inquiries into the agri-cultures of the middle. Cult. Agric. Food Environ. 40, 130–135 (2018).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

  • Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).

    Article 

    Google Scholar 

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 
    CAS 

    Google Scholar 

  • Lenth, R. V. emmeans: Estimated marginal means, aka least-squares means. R package version 1.7.4-1 https://CRAN.R-project.org/package=emmeans (2021).

  • Wasserstein, R. L. & Lazar, N. A. The ASA statement on p-values: context, process, and purpose. Am. Stat. 70, 129–133 (2016).

    Article 

    Google Scholar 

  • Krueger, J. I. & Heck, P. R. Putting the P-value in its place. Am. Stat. 73, 122–128 (2019).

    Article 

    Google Scholar 

  • Wasserstein, R. L., Schirm, A. L. & Lazar, N. A. Moving to a world beyond ‘p < 0.05’. Am. Stat. 73(Suppl. 1), 1–19 (2019).

    Article 

    Google Scholar 

  • Agresti, A. Categorical Data Analysis (Wiley, 2013).


  • Source: Ecology - nature.com

    Silk offers an alternative to some microplastics

    Thermodynamic basis for the demarcation of Arctic and alpine treelines