in

Phycobilisome light-harvesting efficiency in natural populations of the marine cyanobacteria Synechococcus increases with depth

  • Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Goericke, R. & Welschmeyer, N. A. The marine prochlorophyte Prochlorococcus contributes significantly to phytoplankton biomass and primary production in the Sargasso Sea. Deep Res. 40, 2283–2294 (1993).

    Article 

    Google Scholar 

  • Liu, H., Nolla, H. A. & Campbell, L. Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat. Microb. Ecol. 12, 39–47 (1997).

    Article 

    Google Scholar 

  • Huang, S. et al. Novel lineages of prochlorococcus and synechococcus in the global oceans. ISME J. 6, 285–297 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ting, C. S., Rocap, G., King, J. & Chisholm, S. W. Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol. 10, 134–142 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Barlow, A. Photosynthetic characteristics of phycoerythrin-containing marine Synechococcus spp. Arctic 22, 63–74 (1985).

    Google Scholar 

  • Yeh, S. W. et al. Role of phycoerythrin in marine picoplankton synechococcus spp. Science 234, 1422–1424 (1986).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Giovannoni, S. J. & Vergin, K. L. Seasonality in ocean microbial communities. Science 335, 671–676 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Carlson, D. F., Fredj, E. & Gildor, H. The annual cycle of vertical mixing and restratification in the Northern Gulf of Eilat/Aqaba (Red Sea) based on high temporal and vertical resolution observations. Deep Res. Part I Oceanogr. Res. Pap. 84, 1–17 (2014).

    Article 

    Google Scholar 

  • Larkum, A. W. D. & Barrett, J. Light-harvesting processes in algae. Adv. Bot. Res. 10, 1–219 (1983).

    CAS 
    Article 

    Google Scholar 

  • Bibby, T. S., Mary, I., Nield, J., Partensky, F. & Barber, J. Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem. Nature 424, 1051–1054 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bibby, T. S., Nield, J., Chen, M., Larkum, A. W. D. & Barber, J. Structure of a photosystem II supercomplex isolated from Prochloron didemni retaining its chlorophyll a/b light-harvesting system. Proc. Natl Acad. Sci. USA 100, 9050–9054 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Palenik, B. Chromatic adaptation in marine Synechococcus strains. Appl. Environ. Microbiol. 67, 991–994 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kana, T. M. & Glibert, P. M. Effect of irradiances up to 2000 μE m-2 s-1 on marine Synechococcus WH7803-I. Growth, pigmentation, and cell composition. Deep Sea Res. Part A Oceanogr. Res. Pap. 34, 479–495 (1987).

    CAS 
    Article 

    Google Scholar 

  • Six, C., Ratin, M., Marie, D. & Corre, E. Marine Synechococcus picocyanobacteria: light utilization across latitudes. Proc. Natl Acad. Sci. USA 118, 1–11 (2021).

    Article 
    CAS 

    Google Scholar 

  • Perry, M. J., Talbot, M. C. & Alberte, R. S. Photoadaption in marine phytoplankton: response of the photosynthetic unit. Mar. Biol. 62, 91–101 (1981).

  • Mauzerall, D. & Greenbaum, N. L. The absolute size of a photosynthetic unit. BBA Bioenerg. 974, 119–140 (1989).

    CAS 
    Article 

    Google Scholar 

  • Sanfilippo, J. E., Garczarek, L., Partensky, F. & Kehoe, D. M. Chromatic acclimation in cyanobacteria: a diverse and widespread process for optimizing photosynthesis. Annu. Rev. Microbiol. 73, 407–433 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Keren, N. & Paltiel, Y. Photosynthetic energy transfer at the quantum/classical border. Trends Plant Sci. 23, 497–506 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kolodny, Y. et al. Marine cyanobacteria tune energy transfer efficiency in their light‐harvesting antennae by modifying pigment coupling. FEBS J. https://doi.org/10.1111/febs.15371 (2020).

  • Wientjes, E., Van Amerongen, H. & Croce, R. Quantum yield of charge separation in photosystem II: functional effect of changes in the antenna size upon light acclimation the migration of LHCII from PSII to PSI has. J. Phys. Chem. B 117, 51 (2013).

    Article 
    CAS 

    Google Scholar 

  • Chenu, A. et al. Light adaptation in phycobilisome antennas: influence on the rod length and structural arrangement. J. Phys. Chem. B 121, 9196–9202 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Falkowski, P. G., Lin, H. & Gorbunov, M. Y. What limits photosynthetic energy conversion efficiency in nature? Lessons from the oceans. Philos. Trans. R. Soc. B Biol. Sci. 372, 2–8 (2017).

    Article 
    CAS 

    Google Scholar 

  • Gorbunov, M. Y. & Falkowski, P. G. Using chlorophyll fluorescence to determine the fate of photons absorbed by phytoplankton in the world’s oceans. Ann. Rev. Mar. Sci. 14, 367–393 (2021).

    Google Scholar 

  • Govindjee, Hammond, J. H. & Merkelo, H. Primary events, energy transfer, and reactions in photosynthetic events: lifetime of the excited state in vivo: II. Bacteriochlorophyll in photosynthetic bacteria at room temperature. Biophys. J. 12, 809 (1972).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Biggins, J. & Bruce, D. Regulation of excitation energy transfer in organisms containing phycobilins. Photosynth. Res. 20, 1–34 (1989).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Roach, T. & Krieger-Liszkay, A. Regulation of photosynthetic electron transport and photoinhibition. Curr. Protein Pept. Sci. 15, 351–362 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Govindjee, U. Non-Photochemical Quenching and Energy Dissipation in Plants, Algae, and Cyanobacteria (Springer Netherlands, 2014).

    Google Scholar 

  • Kirilovsky, D. Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical-quenching mechanism. Photosynth. Res. 93, 7–16 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lin, H. et al. The fate of photons absorbed by phytoplankton in the global ocean. Science 351, 264–267 (2016).

  • Croce, R. & Van Amerongen, H. Light-harvesting and structural organization of photosystem II: from individual complexes to thylakoid membrane. J. Photochem. Photobiol. B Biol. 104, 142–153 (2011).

    CAS 
    Article 

    Google Scholar 

  • Rahav, E. et al. Heterotrophic and autotrophic contribution to dinitrogen fixation in the Gulf of Aqaba. Mar. Ecol. Prog. Ser. 522, 67–77 (2015).

    CAS 
    Article 

    Google Scholar 

  • Reiss, Z. & Hottinger, L. The Gulf of Aqaba (Springer-Verlag, 1984).

  • Genin, A., Lazar, B. & Brenner, S. Vertical mixing and coral death in the red sea following the eruption of Mount Pinatubo. Nature 377, 507–510 (1995).

    CAS 
    Article 

    Google Scholar 

  • Labiosa, R. G., Arrigo, K. R., Genin, A., Monismith, S. G. & Van Dijken, G. The interplay between upwelling and deep convective mixing in determining the seasonal phytoplankton dynamics in the Gulf of Aqaba: evidence from SeaWiFS and MODIS. Limnol. Oceanogr. 48, 2355–2368 (2003).

    Article 

    Google Scholar 

  • Zarubin, M., Lindemann, Y. & Genin, A. The dispersion-confinement mechanism: phytoplankton dynamics and the spring bloom in a deeply-mixing subtropical sea. Prog. Oceanogr. 155, 13–27 (2017).

    Article 

    Google Scholar 

  • Lindell, D. & Post, A. F. Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea. Limnol. Oceanogr. 40, 1130–1141 (1995).

    Article 

    Google Scholar 

  • Suggett, D. J. et al. Nitrogen and phosphorus limitation of oceanic microbial growth during spring in the Gulf of Aqaba. Aquat. Microb. Ecol. 56, 227–239 (2009).

    Article 

    Google Scholar 

  • Post, A. F. et al. Long term seasonal dynamics of Synechococcus population structure in the Gulf of Aqaba, Northern Red Sea. Front. Microbiol. 2, 131 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sherman, J., Gorbunov, M. Y., Schofield, O. & Falkowski, P. G. Photosynthetic energy conversion efficiency in the West Antarctic Peninsula. Limnol. Oceanogr. 65, 2912–2925 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yoo, Y. D. et al. Mixotrophy in the marine red-tide cryptophyte Teleaulax amphioxeia and ingestion and grazing impact of cryptophytes on natural populations of bacteria in Korean coastal waters. Harmful Algae 68, 105–117 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Marie, D., Partensky, F., Jacquet, S. & Vaulot, D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl. Environ. Microbiol. 63, 186–193 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Brody, S. S. & Rabinowitch, E. Excitation lifetime of photosynthetic pigments in vitro and in vivo. Science 125, 555 (1979).

    Article 

    Google Scholar 

  • Six, C., Thomas, J. C., Brahamsha, B., Lemoine, Y. & Partensky, F. Photophysiology of the marine cyanobacterium Synechococcus sp. WH8102, a new model organism. Aquat. Microb. Ecol. 35, 17–29 (2004).

    Article 

    Google Scholar 

  • Krumova, S. B. et al. Monitoring photosynthesis in individual cells of Synechocystis sp. PCC 6803 on a picosecond timescale. Biophys. J. 99, 2006–2015 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tian, L. et al. Picosecond kinetics of light harvesting and photoprotective quenching in wild-type and mutant phycobilisomes isolated from the cyanobacterium Synechocystis PCC 6803. Biophys. J. 102, 1692–1700 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bhatti, A. F., Kirilovsky, D., van Amerongen, H. & Wientjes, E. State transitions and photosystems spatially resolved in individual cells of the cyanobacterium Synechococcus elongatus. Plant Physiol. 186, 569–580 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Adir, N., Bar-Zvi, S. & Harris, D. The amazing phycobilisome. Biochim. Biophys. Acta Bioenerg. 1861, 148047 (2020).

  • Anderson, J. M. & Andersson, B. The dynamic photosynthetic membrane and regulation of solar energy conversion. Trends Biochem. Sci. 13, 351–355 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mackey, K. R. M., Post, A. F., McIlvin, M. R. & Saito, M. A. Physiological and proteomic characterization of light adaptations in marine Synechococcus. Environ. Microbiol. https://doi.org/10.1111/1462-2920.13744 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Mendoza-Arenas, J. J. et al. Transport enhancement from incoherent coupling between one-dimensional quantum conductors. New J. Phys. 16, 053016 (2014).

  • Campbell, D., Hurry, V., Clarke, A. K., Gustafsson, P. & Quist, G. O. Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol. Mol. Biol. Rev. 62, 667–683 (1998).

  • Ogawa, T., Misumi, M. & Sonoike, K. Estimation of photosynthesis in cyanobacteria by pulse-amplitude modulation chlorophyll fluorescence: problems and solutions. Photosynth. Res. 133, 63–73 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kolber, Z. S., Prášil, O. & Falkowski, P. G. Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim. Biophys. Acta Bioenerg. 1367, 88–106 (1998).

    CAS 
    Article 

    Google Scholar 

  • Kolber, Z. & Falkowski, P. G. Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol. Oceanogr. 38, 1646–1665 (1993).

    CAS 
    Article 

    Google Scholar 

  • Siegel, D. A. et al. Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sens. Environ. 135, 77–91 (2013).

    Article 

    Google Scholar 

  • Gregg, W. W. & Rousseaux, C. S. Global ocean primary production trends in the modern ocean color satellite record (1998-2015). Environ. Res. Lett. 14, 124011 (2019).

  • Kulk, G. et al. Primary production, an index of climate change in the ocean: satellite-based estimates over two decades. Remote Sens. 12, 826 (2020).

  • Van De Poll, W. H. et al. Phytoplankton chlorophyll a biomass, composition, and productivity along a temperature and stratification gradient in the northeast Atlantic Ocean. Biogeosciences 10, 4227–4240 (2013).

    Article 
    CAS 

    Google Scholar 

  • Agusti, S., Lubián, L. M., Moreno-Ostos, E., Estrada, M. & Duarte, C. M. Projected changes in photosynthetic picoplankton in a warmer subtropical ocean. Front. Mar. Sci. 5, 1–16 (2019).

    Article 

    Google Scholar 

  • Capotondi, A., Alexander, M. A., Bond, N. A., Curchitser, E. N. & Scott, J. D. Enhanced upper ocean stratification with climate change in the CMIP3 models. J. Geophys. Res. Ocean. 117, 1–23 (2012).

    Article 

    Google Scholar 

  • Li, G. et al. Increasing ocean stratification over the past half-century. Nat. Clim. Chang. 10, 1116–1123 (2020).

    Article 

    Google Scholar 

  • Kolodny, Y. et al. Tuning quantum dots coupling using organic linkers with different vibrational modes. J. Phys. Chem. C 124, 16159–16165 (2020).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Wastewater is a robust proxy for monitoring circulating SARS-CoV-2 variants

    Ecological memory of prior nutrient exposure in the human gut microbiome