Bardgett, R. D. et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2(10), 720–735. https://doi.org/10.1038/s43017-021-00207-2 (2021).
Google Scholar
O’Mara, F. P. The role of grasslands in food security and climate change. Ann. Bot. 110, 1263–1270. https://doi.org/10.1093/aob/mcs209 (2012).
Google Scholar
Eze, S., Palmer, S. M. & Chapman, P. J. Soil organic carbon stock in grasslands: Effects of inorganic fertilizers, liming and grazing in different climate settings. J. Environ. Manage. 223, 74–84. https://doi.org/10.1016/j.jenvman.2018.06.013 (2018).
Google Scholar
Makoudi, B. et al. Phosphorus deficiency increases nodule phytase activity of faba bean rhizobia symbiosis. Acta Physiol. Plant 40, 63. https://doi.org/10.1007/s11738-018-2619-6 (2018).
Google Scholar
Stecca, J. D. L. et al. Inoculation of soybean seeds coated with osmoprotector in differentssoil pH’s. Acta Sci. Agron. 41, 9. https://doi.org/10.4025/actasciagron.v41i1.39482 (2019).
Google Scholar
Afonso, S., Arrobas, M. & Rodrigues, M. Â. Soil and plant analyses to diagnose hop fields irregular growth. J. Soil Sci. Plant Nutr. 20, 1999–2013. https://doi.org/10.1007/s42729-020-00270-6 (2020).
Google Scholar
Crews, T. E. & Peoples, M. B. Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agric. Ecosyst. Environ 102(3), 279–297. https://doi.org/10.1016/j.agee.2003.09.018 (2004).
Google Scholar
Ossler, J. N., Zielinski, C. A. & Heath, K. D. Tripartite mutualism: Facilitation or trade-offs between rhizobial and mycorrhizal symbionts of legume hosts. Am. J. Bot. 102, 1332–1341. https://doi.org/10.3732/ajb.1500007 (2015).
Google Scholar
Backer, R. et al. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 9, 1473. https://doi.org/10.3389/fpls.2018.01473 (2018).
Google Scholar
Keet, J. H., Ellis, A. G., Hui, C. & Le Roux, J. J. Strong spatial and temporal turnover of soil bacterial communities in South Africa’s hyper diverse fynbos biome. Soil Biol. Biochem. 136, 107541. https://doi.org/10.1016/j.soilbio.2019.107541 (2019).
Google Scholar
Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103(3), 626–631. https://doi.org/10.1073/pnas.0507535103 (2006).
Google Scholar
Kracmarova, M. et al. Response of soil microbes and soil enzymatic activity to 20 years of fertilization. Agronomy 10, 1542. https://doi.org/10.3390/agronomy10101542 (2020).
Google Scholar
Wang, C., Liu, D. H. & Bai, E. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biol. Biochem. 120, 126–133. https://doi.org/10.1016/j.soilbio.2018.02.003 (2018).
Google Scholar
Lucas, R. W. et al. A meta-analysis of the effects of nitrogen additions on base cations: Implications for plants, soils, and streams. For. Ecol. Manage. 262, 95–104. https://doi.org/10.1016/j.foreco.2011.03.018 (2011).
Google Scholar
Wang, Y. et al. Soil pH is a major driver of soil diazotrophic community assembly in Qinghai-Tibet alpine meadows. Soil Biol. Biochem. 115, 547–555. https://doi.org/10.1016/j.soilbio.2017.09.024 (2017).
Google Scholar
Wan, S. et al. Effects of lime application and understory removal on soil microbial communities in subtropical eucalyptus L’Hér. plantations. Forests 10, 338 (2019).
Google Scholar
Yin, C., Schlatter, D. C., Kroese, D. R., Paulitz, T. C. & Hagerty, C. H. Impacts of lime application on soil bacterial microbiome in dryland wheat soil in the Pacific Northwest. Appl. Soil Ecol. 168, 104113 (2021).
Google Scholar
Schroeder, K. L., Schlatter, D. C. & Paulitz, T. C. Location-dependent impacts of liming and crop rotation on bacterial communities in acid soils of the Pacific Northwest. Appl. Soil. Ecol. 130, 59–68 (2018).
Google Scholar
Sudhakaran, M. & Ravanachandar, A. Role of soil enzymes in agroecosystem. Biotica Res. Today 2(6), 443–444 (2020).
Lacava, P. T., Machado, P. C. & de Andrade, P. H. M. Phosphate solubilization by endophytes from the tropical plants. Endophytes 3, 207–226 (2021).
Nannipieri, P., Giagnoni, L., Landi, L. & Renella, G. Role of Phosphatase Enzymes in Soil. Phosphorus in Action 215–243 (Springer, 2011).
Google Scholar
Zhang, L. et al. Soil labile organic carbon fractions and soil enzyme activities after 10 years of continuous fertilization and wheat residue incorporation. Sci. Rep. 10(1), 11318. https://doi.org/10.1038/s41598-020-68163-3 (2020).
Google Scholar
Turner, B. L. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils. Appl. Environ. Microbiol. 76, 6485–6493 (2010).
Google Scholar
Acosta-Martínez, V., Pérez-Guzmán, L. & Johnson, J. M. Simultaneous determination of β-glucosidase, β-glucosaminidase, acid phosphomonoesterase, and arylsulfatase activities in a soil sample for a biogeochemical cycling index. Appl. Soil Ecol. 142, 72–80. https://doi.org/10.12691/aees-8-6-26 (2019).
Google Scholar
Parham, J. A. & Deng, S. P. Detection, quantification and characterization of β-glucosaminidase activity in soil. Soil Biol. Biochem. 32(8–9), 1183–1190. https://doi.org/10.1016/S0038-0717(00)00034-1 (2000).
Google Scholar
Olajuyigbe, F. M. & Fatokun, C. O. Biochemical characterization of an extremely stable pH-versatile laccase from Sporothrix carnis CPF-05. Int. J. Biol. Macromol. 94, 535–543. https://doi.org/10.1016/j.ijbiomac.2016.10.037 (2017).
Google Scholar
Bhuyan, M. B. et al. Explicating physiological and biochemical responses of wheat cultivars under acidity stress: insight into the antioxidant defense and glyoxalase systems. Physiol. Mol. Biol. Plants 25, 865–879. https://doi.org/10.1007/s12298-019-00678-0 (2019).
Google Scholar
Delgado-Baquerizo, M., Grinyer, J., Reich, P. B. & Singh, B. K. Relative importance of soil properties and microbial community for soil functionality: Insights from a microbial swap experiment. Funct. Ecol. 30, 1862–1873 (2016).
Google Scholar
Zhao, L. et al. Mercury methylation in rice paddies and its possible controlling factors in the Hg mining area, Guizhou province, Southwest China. Environ. Pollut. 215, 1–9. https://doi.org/10.1016/j.envpol.2016.05.001 (2016).
Google Scholar
Ward, D., Kirkman, K., Hagenah, N. & Tsvuura, Z. Soil respiration declines with increasing nitrogen fertilization and is not related to productivity in long-term grassland experiments. Soil Biol. Biochem. 115, 415–422. https://doi.org/10.1016/j.soilbio.2017.08.035 (2017).
Google Scholar
Ward, M. et al. Impact of 2019–2020 mega-fires on Australian fauna habitat. Nat. Ecol. Evol. 4(10), 1321–1326. https://doi.org/10.1038/s41559-020-1251-1 (2020).
Google Scholar
Fynn, R. W. & O’Connor, T. G. Determinants of community organization of a South African mesic grassland. J. Veg. Sci. 16(1), 93–102 (2005).
Google Scholar
Morris, C. & Fynn, R. The Ukulinga long-term grassland trials: Reaping the fruits of meticulous, patient research. Bull. Grassl. Soc. S. Afr. 11(1), 7–22 (2001).
Le Roux, N. P. & Mentis, M. Veld compositional response to fertilization in the tall grassveld of Natal. S. Afr. J. Plant Soil 3(1), 1–10. https://doi.org/10.1080/02571862.1986.10634177 (1986).
Google Scholar
Tsvuura, Z. & Kirkman, K. P. Yield and species composition of a mesic grassland savannah in South Africa are influenced by long-term nutrient addition. Austral Ecol. 38, 959–970 (2013).
Google Scholar
Goldman, E. & Green, L. H. Practical Handbook of Microbiology 2nd edn, 864 (CRC Press Taylor and Francis Group, 2008).
Google Scholar
Akinbowale, O. L., Peng, H. & Barton, M. D. Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia. J. Appl. Microbiol. 103(5), 2016–2025 (2007).
Google Scholar
Jackson, C. R., Tyler, H. L. & Millar, J. J. Determination of microbial extracellular enzyme activity in waters, soils, and sediments using high throughput microplate assays. Preparation of substrate and buffer solutions for colorimetric analyses of enzyme. J. Vis. Exp. 80, 1–9. https://doi.org/10.3791/50399 (2013).
Google Scholar
Goyal, M. & Kaur, R. Interactive effect of nitrogen nutrition, nitrate reduction and seasonal variation on oxalate synthesis in leaves of Napier-bajar hybrid (Pennisetum purpureum P. glaucum). Crop Pasture Sci 70, 669–675 (2019).
Google Scholar
Pavlovic, J., Kostic, L., Bosnic, P., Kirkby, E. A. & Nikolic, M. Interactions of silicon with essential and beneficial elements in plants. Front. Plant Sci. 12, 1224. https://doi.org/10.3389/fpls.2021.697592 (2021).
Google Scholar
Li, Y., Tremblay, J., Bainard, L. D., Cade-Menun, B. & Hamel, C. Long-term effects of nitrogen and phosphorus fertilization on soil microbial community structure and function under continuous wheat production. Environ. Microbiol. 22, 1066–1088 (2020).
Google Scholar
Guo, Z., Han, J., Li, J., Xu, Y. & Wang, X. Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure. PLoS ONE 14, e0211163 (2019).
Google Scholar
Shang, L., Wan, L. I., Zhou, X., Li, S. & Li, X. Effects of organic fertilizer on soil nutrient status, enzyme activity, and bacterial community diversity in Leymus chinensis steppe in Inner Mongolia, China. PLoS ONE https://doi.org/10.1371/journal.pone.0240559 (2020).
Google Scholar
Gautam, A. et al. Responses of soil microbial community structure and enzymatic activities to long-term application of mineral fertilizer and beef manure. Environ. Sustain. Indic. 8, 10007S. https://doi.org/10.1016/j.indic.2020.100073 (2020).
Google Scholar
Wang, J., Lu, X., Zhang, J., Wei, G. & Xiong, Y. Regulating soil bacterial diversity, community structure and enzyme activity using residues from golden apple snails. Sci. Rep. 10(1), 1–11 (2020).
Google Scholar
Xu, D., Carswell, A., Zhu, Q., Zhang, F. & de Vries, W. Modelling long-term impacts of fertilization and liming on soil acidification at Rothamsted experimental station. Sci. Total Environ. 713, 136249 (2020).
Google Scholar
von Tucher, S., Hörndl, D. & Schmidhalter, U. Interaction of soil pH and phosphorus efficacy: Long-term effects of P fertilizer and lime applications on wheat, barley, and sugar beet. Ambio 47, 41–49 (2018).
Google Scholar
Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. USA 112, 10967–10972 (2015).
Google Scholar
Pan, J. et al. Dynamics of soil nutrients, microbial community structure, enzymatic activity, and their relationships along a chronosequence of Pinus massoniana plantations. Forests 12, 376 (2021).
Google Scholar
Andrés, J. A., Rovera, M., Guiñazú, L. B., Pastor, N. A. & Rosas, S. B. Role of in crop improvement. In Bacteria in Agrobiology: Plant Growth Responses 107–122 (Springer, 2011).
Google Scholar
Jeong, H., Choi, S. K., Ryu, C. M. & Park, S. H. Chronicle of a soil bacterium: Paenibacillus polymyxa E681 as a tiny guardian of plant and human health. Front. Microbiol. 10, 467 (2019).
Google Scholar
Garbeva, P. V., van Veen, J. A. & van Elsas, J. D. Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 42, 243–270. https://doi.org/10.1146/annurev.phyto.42.012604.135455 (2004).
Google Scholar
Sinsabaugh, R. L. & Moorhead, D. L. Resource allocation to extracellular enzyme production: A model for nitrogen and phosphorus control of litter decomposition. Soil Biol. Biochem. 26(10), 1305–1311. https://doi.org/10.1016/0038-0717(94)90211-9 (1994).
Google Scholar
Xiao, W., Chen, X., Jing, X. & Zhu, B. A meta-analysis of soil extracellular enzyme activities in response to global change. Soil Biol. Biochem. 123, 21–32. https://doi.org/10.1016/j.soilbio.2018.05.001 (2018).
Google Scholar
Billah, M. et al. Phosphorus & phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiol. J. 36(10), 904–916. https://doi.org/10.1080/01490451.2019.1654043 (2019).
Google Scholar
Turner, B. L., McKelvie, I. D. & Haygarth, P. M. Characterisation of water-extractable soil organic phosphorus by phosphatase hydrolysis. Soil Biol Biochem. 34, 27–35. https://doi.org/10.1016/S0038-0717(01)00144-4 (2002).
Google Scholar
van Aarle, I. M. & Plassard, C. Spatial distribution of phosphatase activity associated with ectomycorrhizal plants related to soil type. Soil Biol. Biochem. 42(2), 324–330. https://doi.org/10.1016/j.soilbio.2009.11.011 (2020).
Google Scholar
Source: Ecology - nature.com