in

Invasive brown treesnakes (Boiga irregularis) move short distances and have small activity areas in a high prey environment

  • Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. 105, 19052–19059 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640 (1990).

    Article 

    Google Scholar 

  • Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, 1122–1133. https://doi.org/10.1126/science.aaa2478 (2015).

    CAS 
    Article 

    Google Scholar 

  • Allen, A. M. & Singh, N. J. Linking movement ecology with wildlife management and conservation. Front. Ecol. Evol. 3, 1–13. https://doi.org/10.3389/fevo.2015.00155 (2016).

    ADS 
    Article 

    Google Scholar 

  • Fraser, K. C. et al. Tracking the conservation promise of movement ecology. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2018.00150 (2018).

    Article 

    Google Scholar 

  • Boutin, S. Food supplementation experiments with terrestrial vertebrates: Patterns, problems, and the future. Can. J. Zool. 68, 203–220 (1990).

    Article 

    Google Scholar 

  • Adams, E. S. Approaches to the study of territory size and shape. Annu. Rev. Ecol. Syst. 32, 277–303. https://doi.org/10.1146/annurev.ecolsys.32.081501.114034 (2001).

    Article 

    Google Scholar 

  • Ruffino, L., Salo, P., Koivisto, E., Banks, P. B. & Korpimaki, E. Reproductive responses of birds to experimental food supplementation: A meta-analysis. Front. Ecol. Evol. 11, 1–13. https://doi.org/10.1186/s12983-014-0080-y (2014).

    CAS 
    Article 

    Google Scholar 

  • Taylor, E. N., Malawy, M. A., Browning, D. M., Lemar, S. V. & DeNardo, D. F. Effects of food supplementation on the physiological ecology of female western diamond-backed rattlesnakes (Crotalus atrox). Oecologia 144, 206–213. https://doi.org/10.1007/s00442-005-0056-x (2005).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Wasko, D. K. & Sasa, M. Food resources influence spatial ecology, habitat selection, and foraging behavior in an ambush-hunting snake (Viperidae: Bothrops asper): An experimental study. Zoology 115, 179–187. https://doi.org/10.1016/j.zool.2011.10.001 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Glaudas, X. & Alexander, G. J. Food supplementation affects the foraging ecology of a low-energy, ambush-foraging snake. Behav. Ecol. Sociobiol. 71, 1–11. https://doi.org/10.1007/s00265-016-2239-3 (2017).

    Article 

    Google Scholar 

  • Secor, S. M. & Nagy, K. A. Bioenergetic correlates of foraging mode for the snakes Crotalus cerastes and Masticophis flagellum. Ecology 75, 1600–1614 (1994).

    Article 

    Google Scholar 

  • Christy, M. T., Savidge, J. A., Yackel Adams, A. A., Gragg, J. E. & Rodda, G. H. Experimental landscape reduction of wild rodents increases movements in the invasive brown treesnake (Boiga irregularis). Manag. Biol. Invasions 8, 455–467. https://doi.org/10.3391/mbi.2017.8.4.01 (2017).

    Article 

    Google Scholar 

  • Neilson, E. W., Avgar, T., Burton, A. C., Broadley, K. & Boutin, S. Animal movement affects interpretation of occupancy models from camera-trap surveys of unmarked animals. Ecosphere 9, 1–15. https://doi.org/10.1002/ecs2.2092 (2018).

    Article 

    Google Scholar 

  • Efford, M. G. & Dawson, D. K. Occupancy in continuous habitat. Ecosphere 3, 1–15. https://doi.org/10.1890/ES11-00308.1 (2012).

    Article 

    Google Scholar 

  • Tang, Z., Huang, Q., Wu, H., Kuang, L. & Fu, S. The behavioral response of prey fish to predators: The role of predator size. PeerJ 5, 1–13. https://doi.org/10.7717/peerj.3222 (2017).

    Article 

    Google Scholar 

  • Thorsen, M., Shorten, R., Lucking, R. & Lucking, V. Norway rats (Rattus norvegicus) on Fregate Island, Seychelles: The invasion; subsequent eradication attempts and implications for the island’s fauna. Biol. Cons. 96, 133–138 (2000).

    Article 

    Google Scholar 

  • Rodda, G. H. Foraging behavior of the brown tree snake, Boiga irregularis. Herpetol. J. 2, 110–114 (1992).

    Google Scholar 

  • Savidge, J. A. Extinction of an island forest avifauna by an introduced snake. Ecology 68, 660–668 (1987).

    Article 

    Google Scholar 

  • Rodda, G. H., McCoid, M. J., Fritts, T. H. & Campbell, E. W. III. Population trends and limiting factors in Boiga irregularis. In Problem Snake Management: The Habu and the Brown Treesnake (eds Rodda, G. H. et al.) 236–256 (Cornell University Press, 1999).

    Chapter 

    Google Scholar 

  • Yackel Adams, A. A., Lardner, B., Knox, A. J. & Reed, R. N. Inferring the absence of an incipient population during a rapid response for an invasive species. PLoS ONE 13, 1–13 (2018).

    Article 
    CAS 

    Google Scholar 

  • Clark, L., Clark, C. & Siers, S. Brown tree snake methods and approaches for control. In Ecology and Management of Terrestrial Vertebrate Invasive Species in the United States (eds Pitt, W. C. et al.) 107–134 (CRC Press, 2018).

    Google Scholar 

  • Christy, M. T., Yackel Adams, A. A., Rodda, G. H., Savidge, J. A. & Tyrrell, C. L. Modelling detection probabilities to evaluate management and control tools for an invasive species. J. Appl. Ecol. 47, 106–113 (2010).

    Article 

    Google Scholar 

  • Tyrrell, C. L. et al. Evaluation of trap capture in a geographically closed population of brown treesnakes on Guam. J. Appl. Ecol. 46, 128–135 (2009).

    Article 

    Google Scholar 

  • Siers, S. R., Yackel Adams, A. A. & Reed, R. N. Behavioral differences following ingestion of large meals and consequences for management of a harmful invasive snake: A field experiment. Ecol. Evol. 8, 10075–10093 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Santana-Bendix, M. A. Movements, Activity Patterns and Habitat Use of Boiga irregularis (Colubridae), an Introduced Predator in the Island of Guam (University of Arizona, 1994).

    Google Scholar 

  • Tobin, M. E., Sugihara, R. T., Pochop, P. A. & Linnell, M. A. Nightly and seasonal movements of Boiga irregularis on Guam. J. Herpetol. 33, 281–291 (1999).

    Article 

    Google Scholar 

  • Lardner, B., Savidge, J. A., Reed, R. N. & Rodda, G. H. Movements and activity of juvenile brown treesnakes (Boiga irregularis). Copeia 2014, 428–436 (2014).

    Article 

    Google Scholar 

  • Siers, S. R., Savidge, J. A. & Reed, R. N. Invasive brown treesnake movements at road edges indicate road-crossing avoidance. J. Herpetol. 48, 500–505 (2014).

    Article 

    Google Scholar 

  • Wiewel, A. S., Yackel Adams, A. A. & Rodda, G. H. Distribution, density, and biomass of introduced small mammals in the southern Marian Islands. Pac. Sci. 63, 205–222 (2009).

    Article 

    Google Scholar 

  • Camp, R. J., Amidon, F. A., Marshall, A. P. & Pratt, T. K. Bird populations on the island of Tinian; Persistence despite wholesale loss of native forests. Pac. Sci. 66, 283–298. https://doi.org/10.2984/66.3.3 (2012).

    Article 

    Google Scholar 

  • Lardner, B., Yackel Adams, A. A., Knox, A. J., Savidge, J. A. & Reed, R. N. Do observer fatigue and taxon bias compromise visual encounter surveys for small vertebrates?. Wildl. Res. 46, 127–135 (2019).

    Article 

    Google Scholar 

  • Mathies, T., Levine, B., Engeman, R. & Savidge, J. A. Pheromonal control of the invasive brown treesnake: Potency of female sexual attractiveness pheromone varies with ovarian state. Int. J. Pest Manag. https://doi.org/10.1080/09670874.2013.784374 (2013).

    Article 

    Google Scholar 

  • Boback, S. M., Nafus, M. G., Yackel Adams, A. A. & Reed, R. N. Use of visual surveys and radiotelemetry reveals sources of detection bias for a cryptic snake at low densities. Ecosphere https://doi.org/10.1002/ecs2.3000 (2020).

    Article 

    Google Scholar 

  • Harper, G. A. & Rutherford, M. Home range and population density of black rats (Rattus rattus) on a seabird island: A case for a marine subsidised effect?. N. Z. J. Ecol. 40, 219–228 (2016).

    Google Scholar 

  • Hochachka, W. M., Martin, K., Doyle, F. & Krebs, C. J. Monitoring vertebrate populations using observational data. Can. J. Zool. 78, 521–529 (2000).

    Article 

    Google Scholar 

  • Wiewel, A. S., Yackel Adams, A. A. & Rodda, G. H. Evaluating abundance estimate precision and the assumptions of a count-based index for small mammals. J. Wildl. Manag. 73, 761–771. https://doi.org/10.2193/2008-180 (2009).

    Article 

    Google Scholar 

  • Fauteux, D. et al. Evaluation of invasive and non-invasive methods to monitor rodent abundance in the Arctic. Ecosphere 9, 1–18. https://doi.org/10.1002/ecs2.2124 (2018).

    Article 

    Google Scholar 

  • Siers, S. R. et al. Assessment of brown treesnake activity and bait take following large-scale snake suppression in Guam. (ed APHIS USDA, WS, NWRC) (Final Report QA-2438, Hilo, HI, 2018).

  • McQueen, D. J., Post, J. R. & Mills, E. L. Trophic relationships in fresh-water pelagic ecosystems. Can. J. Fish. Aquat. Sci. 43, 1571–1581 (1986).

    Article 

    Google Scholar 

  • Sih, A., Crowley, P., McPeek, M., Petranka, J. & Strohmeier, K. Predation, competition, and prey communities: A review of field experiments. Annu. Rev. Ecol. Syst. 16, 269–311 (1985).

    Article 

    Google Scholar 

  • Dorcas, M. E. et al. Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park. Proc. Natl. Acad. Sci. 109, 2418–2422. https://doi.org/10.1073/pnas.1115226109 (2012).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Miranda, E. B. P. The plight of reptiles as ecological actors in the tropics. Front. Ecol. Evol. 5, 1–15. https://doi.org/10.3389/fevo.2017.00159 (2017).

    Article 

    Google Scholar 

  • Campbell, E. W. III., Yackel Adams, A. A., Converse, S. J., Fritts, T. H. & Rodda, G. H. Do predators control prey species abundance? An experimental test with brown treesnakes on Guam. Ecology 93, 1194–1203 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Lindell, L. E. & Forsman, A. Density effects and snake predation: Prey limitation and reduced growth rate of adders at high density of conspecifics. Can. J. Zool. 74, 1000–1007 (1996).

    Article 

    Google Scholar 

  • Schoener, T. W., Spiller, D. A. & Losos, J. B. Predation on a common Anolis lizard: Can the food-web effects of a devastating predator be reversed?. Ecol. Monogr. 72, 383–407 (2002).

    Article 

    Google Scholar 

  • McCleery, R. A. et al. Marsh rabbit mortalities tie pythons to the precipitous decline of mammals in the Everglades. Proc. R. Soc. Lond. 282, 20150120. https://doi.org/10.1098/rspb.2015.0120 (2015).

    Article 

    Google Scholar 

  • Plummer, M. V. & Congdon, J. D. Radiotelemetric study of activity and movements of racers (Coluber constrictor) associated with a Carolina bay in South Carolina. Copeia 1994, 20–26 (1994).

    Article 

    Google Scholar 

  • Madsen, T. & Shine, R. Seasonal migration of predators and prey—A study of pythons, and rats in tropical Australia. Ecology 77, 149–156 (1996).

    Article 

    Google Scholar 

  • Chandler, C. J., Van Helden, B., Close, P. G. & Speldewinde, P. C. 2D or not 2D? Three-dimensional home range analysis better represents space use by an arboreal mammal. Acta Oecol. 105, 103576. https://doi.org/10.1016/j.actao.2020.103576 (2020).

    Article 

    Google Scholar 

  • Udyawer, V., Simpfendorfer, C. A. & Heupel, M. R. Diel patterns in three-dimensional use of space by sea snakes. Anim. Biotelem. 3, 1–9. https://doi.org/10.1186/s40317-015-0063-6 (2015).

    Article 

    Google Scholar 

  • Shine, R. Reproduction in Australian elapid snakes II. Female reproductive cycles. Aust. J. Zool. 25, 655–666 (1977).

    Article 

    Google Scholar 

  • Murcia, C. Edge effects in fragmented forests: Implications for conservation. Trends Ecol. Evol. 10, 58–62 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Matlack, G. R. Microenvironment variation within and among forest edge sites in the eastern United States. Biol. Cons. 66, 185–194 (1993).

    Article 

    Google Scholar 

  • Kapos, V. Effects of isolation on the water status of forest patches in the Brazilian Amazon. Trop. Ecol. 5, 173–185 (1989).

    Article 

    Google Scholar 

  • Williams-Linera, G. Vegetation structure and environmental conditions of forest edges in Panama. J. Ecol. 78, 356–373 (1990).

    Article 

    Google Scholar 

  • Matlack, G. R. Vegetation dynamics of the forest edge: Trends in space and successional time. J. Ecol. 82, 113–123 (1994).

    Article 

    Google Scholar 

  • Chen, J., Franklin, J. F. & Spies, T. A. Vegetation responses to edge environments in old-growth douglas-fir forests. Ecol. Appl. 2, 387–396 (1992).

    PubMed 
    Article 

    Google Scholar 

  • Gates, J. E. Powerline corridors, edge effects, and wildlife in forested landscapes of the central Appalachians. In Wildlife and Habitats in Managed Landscapes (eds Rodiek, J. E. & Bolen, E. G.) 13–32 (Island Press, 1991).

    Google Scholar 

  • Kroodsma, R. L. Edge effect on breeding forest birds along a power-line corridor. J. Appl. Ecol. 19, 361–370 (1982).

    Article 

    Google Scholar 

  • Morgan, K. A. & Gates, J. E. Bird population patterns in forest edge and strip vegetation at Remington Farms, Maryland. J. Wildl. Manag. 46, 933–944 (1982).

    Article 

    Google Scholar 

  • Weatherhead, P. J. & Charland, M. B. Habitat selection in an Ontario population of the snake, Elaphe obsoleta. J. Herpetol. 19, 12–19 (1985).

    Article 

    Google Scholar 

  • Durner, G. M. & Gates, J. E. Spatial ecology of black rat snakes on Remington Farms, Maryland. J. Wildl. Manag. 57, 812–826 (1993).

    Article 

    Google Scholar 

  • Mushinsky, H. R. Foraging ecology. In Snakes: Ecology and Evolutionary Biology (eds Seigel, R. A. et al.) 302–334 (Macmillan Publishing Company, 1987).

    Google Scholar 

  • Fritts, T. H., Scott, N. J. Jr. & Smith, B. J. Trapping Boiga irregularis on Guam using bird odors. J. Herpetol. 23, 189–192 (1989).

    Article 

    Google Scholar 

  • Shivik, J. A. Brown tree snake response to visual and olfactory cues. J. Wildl. Manag. 62, 105–111 (1998).

    Article 

    Google Scholar 

  • Simkova, O., Frydlova, P., Zampachova, B., Frynta, D. & Landova, E. Development of behavioral profile in the Northern common boa (Boa imperator): Repeatable independent traits or personality?. PLoS ONE 12, 1–35. https://doi.org/10.1371/journal.pone.0177911 (2017).

    CAS 
    Article 

    Google Scholar 

  • Fritts, T. H., McCoid, M. J. & Gomez, D. M. Dispersal of snakes to extralimital islands: Incidents of the brown treesnake, Boiga irregularis, dispersing to islands in ships and aircraft. In Problem Snake Management: The Habu and the Brown Treesnake (eds Rodda, G. H. et al.) 209–223 (Cornell University Press, 1999).

    Google Scholar 

  • Yackel Adams, A. A. et al. Can we prove that an undetected species is absent? Evaluating whether brown treesnakes are established on the island of Saipan using surveillance and expert opinion. Manag. Biol. Invas. 12, 901–926 (2021).

    Article 

    Google Scholar 

  • Siers, S. R. & Savidge, J. A. Restoration Plan for the Habitat Management Unit, Naval Support Activity Andersen, Guam 1–238 (Colorado State University, 2017).

    Google Scholar 

  • Dorr, B. S., Clark, C. S. & Savarie, P. (USDA APHIS WS National Wildlife Research Center, Fort Collins, CO, 2016).

  • Reinert, H. K. & Cundall, D. An improved surgical implantation method for radio-tracking snakes. Copeia 1982, 702–705 (1982).

    Article 

    Google Scholar 

  • Shine, R. Strangers in a strange land: Ecology of the Australian colubrid snakes. Copeia 1991, 120–131 (1991).

    Article 

    Google Scholar 

  • Savidge, J. A., Qualls, F. J. & Rodda, G. H. Reproductive biology of the brown tree snake, Boiga irregularis (Reptilia: Colubridae), during colonization of Guam and comparison with that in their native range. Pac. Sci. 61, 191–199 (2007).

    Article 

    Google Scholar 

  • Yackel Adams, A. A. & Nafus, M. G. Brown Treesnake visual survey and radiotelemetry data, Guam 2015: U.S. Geological Survey data release. https://doi.org/10.5066/P939BM0W (2020).

  • Savidge, J. A. Food habits of Boiga irregularis, an introduced predator on Guam. J. Herpetol. 22, 275–282 (1988).

    Article 

    Google Scholar 

  • Reed, R. N. & Boback, S. M. Does body size predict dates of species description among North American and Australian reptiles and amphibians?. Glob. Ecol. Biogeogr. 11, 41–47 (2002).

    Article 

    Google Scholar 

  • Duong, T. ks: Kernel density estimation and kernel discriminant analysis for multivariate data in R. J. Stat. Softw. 21, 1–16 (2007).

    Article 

    Google Scholar 

  • R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

    Google Scholar 

  • Simpfendorfer, C. A., Olsen, E. M., Heupel, M. R. & Moland, E. Three-dimensional kernel utilization distributions improve estimates of space use in aquatic animals. Can. J. Fish. Aquat. Sci. 69, 565–572 (2012).

    Article 

    Google Scholar 

  • Gitzen, R. A., Millspaugh, J. J. & Kernohan, B. J. Bandwidth selection for fixed-kernel analysis of animal utilization distributions. J. Wildl. Manag. 70, 1334–1344 (2006).

    Article 

    Google Scholar 

  • Cooper, N. W., Sherry, T. W. & Marra, P. P. Modeling three-dimensional space use and overlap in birds. Auk 131, 681–693 (2014).

    Article 

    Google Scholar 

  • ArcGIS Desktop (Environmental Systems Research, 2017).

  • Nafus, M. G., Boback, S. M., Klug, P. E., Yackel Adams, A. A. & Reed, R. N. Brown treesnake movement following snake suppression in the Habitat Management Unit on Northern Guam from 2015. U.S Geological Survey data release. https://doi.org/10.5066/P95QJ2PE (2022).


  • Source: Ecology - nature.com

    Agro-pastoralists’ perception of climate change and adaptation in the Qilian Mountains of northwest China

    Best practices for instrumenting honey bees