Hu ZM, Li SG, Guo Q, Niu SL, He NP, Li LH. et al. A synthesis of the effect of grazing exclusion on carbon dynamics in grasslands in China. Global Change Biol. 2016;22:1385–93.
Google Scholar
Lyu X, Li XB, Gong JR, Wang H, Dang DL, Dou HS, et al. Comprehensive grassland degradation monitoring by remote sensing in Xilinhot, Inner Mongolia, China. Sustainability. 2020;12:3682.
Google Scholar
O’Mara FP. The role of grasslands in food security and climate change. Ann Bot-London. 2012;110:1263–70.
Google Scholar
Bryan BA, Gao L, Ye YQ, Sun XF, Connor JD, Crossman ND, et al. China’s response to a national land-system sustainability emergency. Nature. 2018;559:193–204.
Google Scholar
Bardgett RD, Bullock JM, Lavorel S, Manning P, Schaffner U, Ostle N. et al. Combatting global grassland degradation. Nat Rev Earth Environ. 2021;2:720–35.
Google Scholar
Chang JF, Ciais P, Gasser T, Smith P, Herrero M, Havlik P, et al. Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nat Commun. 2021;12:118.
Google Scholar
Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH. Ecological linkages between aboveground and belowground biota. Science. 2004;304:1629–33.
Google Scholar
Feeney DS, Crawford JW, Daniell T, Hallett PD, Nunan N, Ritz K, et al. Three-dimensional microorganization of the soil-root-microbe system. Microb Ecol. 2006;52:151–8.
Google Scholar
Harris J. Soil microbial communities and restoration ecology: Facilitators or followers? Science. 2009;325:573–4.
Google Scholar
Vecrin MP, Muller S. Top-soil translocation as a technique in the re-creation of species-rich meadows. Appl Veg Sci. 2003;6:271–8.
Google Scholar
Middleton EL, Bever JD. Inoculation with a native soil community advances succession in a grassland restoration. Restor Ecol. 2012;20:218–26.
Google Scholar
Wubs ERJ, van der Putten WH, Bosch M, Bezemer TM. Soil inoculation steers restoration of terrestrial ecosystems. Nat Plants. 2016;2:16107.
Google Scholar
Wubs ERJ, van Heusden T, Melchers PD, Bezemer TM. Soil inoculation steers plant-soil feedback, suppressing ruderal plant species. Front Ecol Evol. 2019;7:451.
Google Scholar
Bever JD. Feedback between plants and their soil communities in an old field community. Ecology. 1994;75:1965–77.
Google Scholar
Bennett JA, Maherali H, Reinhart KO, Lekberg Y, Hart MM, Klironomos J. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science. 2017;355:181–4.
Google Scholar
Contos P, Wood JL, Murphy NP, Gibb H. Rewilding with invertebrates and microbes to restore ecosystems: Present trends and future directions. Ecol Evol. 2021;11:7187–200.
Google Scholar
Emam T. Local soil, but not commercial AMF inoculum, increases native and non-native grass growth at a mine restoration site. Restor Ecol. 2016;24:35–44.
Google Scholar
Moradi J, Vicentini F, Simackova H, Pizl V, Tajovsky K, Stary J. An investigation into the long-term effect of soil transplant in bare spoil heaps on survival and migration of soil meso and macrofauna. Ecol Eng. 2018;110:158–64.
Google Scholar
Carbajo V, den Braber B, van der Putten WH, De Deyn GB. Enhancement of late successional plants on ex-arable land by soil inoculations. Plos One. 2011;6:e21943.
Google Scholar
Ma W, Liang XS, Wang ZW, Luo WT, Yu Q, Han XG. Resistance of steppe communities to extreme drought in northeast China. Plant Soil. 2022;473:181–194.
IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome, 2015.
Jaunatre R, Buisson E, Dutoit T. Topsoil removal improves various restoration treatments of a Mediterranean steppe (La Crau, southeast France). Appl Veg Sci. 2014;17:236–45.
Google Scholar
Kuo S. Methods of soil analysis. Part 3: chemical methods. Soil Science Society of America: Madison, 1996.
Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH. Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. P Natl Acad Sci USA. 2008;105:10583–8.
Google Scholar
De Beeck MO, Lievens B, Busschaert P, Declerck S, Vangronsveld J, Colpaert JV. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. Plos One. 2014;9:e97629.
Google Scholar
Magoč T, Salzberg SL. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–63.
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.
Google Scholar
Chen SF, Zhou YQ, Chen YR, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90.
Google Scholar
Edgar RC. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.
Google Scholar
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microb. 2007;73:5261–7.
Google Scholar
Quast C, Pruesse E, Gerken J, Peplies J, Yarza P, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:590–6.
Google Scholar
Kõljalg U, Larsson K-H, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, et al. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol. 2005;166:1063–8.
Google Scholar
Oostenbrink M. Estimating nematode populations by some selected methods. Nematology, Chapel Hill, 1960.
Townshend JL. A modification and evaluation of the apparatus for the Oostenbrink direct cotton wool filter extraction method. Nematologica. 1963;9:106–10.
Google Scholar
Bongers T. De Nematoden van Nederland. In: Vormgeving en technische realisatie. Uitgeverij Pirola, Schoorl, 1994.
Ahmad W, Jairjpuri MS. Mononchida: the predaceous nematodes. Nematology Monographs and Perspectives. Brill, Boston, 2010.
Li Q, Liang WJ, Zhang XK, Mahamood M. Soil nematodes of grasslands in Northern China. Academic Press: San Diego, 2017.
Wu ZY, Raven PH, Hong DY. Flora of China. Science Press: Beijing, 2013.
Munson SM, Long AL, Wallace CSA, Webb RH. Cumulative drought and land-use impacts on perennial vegetation across a North American dryland region. Appl Veg Sci. 2016;19:430–41.
Google Scholar
Li YH, Wang W, Liu ZL, Jiang S. Grazing gradient versus restoration succession of leymus chinensis (Trin.) Tzvel. grassland in inner mongolia. Restor Ecol. 2008;16:572–83.
Google Scholar
Liang C, Michalk DL, Millar GD. The ecology and growth patterns of Cleistogenes species in degraded grasslands of eastern Inner Mongolia, China. J Appl Ecol. 2002;39:584–94.
Google Scholar
Liu ZG, Li ZQ. Effects of different grazing regimes on the morphological traits of Carex duriuscula on the Inner Mongolia steppe. China. New Zeal J Agr Res. 2010;53:5–12.
Google Scholar
Liu M, Gong JR, Pan Y, Luo QP, Zhai ZW, Yang LL, et al. Response of dominant grassland species in the temperate steppe of Inner Mongolia to different land uses at leaf and ecosystem levels. Photosynthetica. 2018;56:921–31.
Google Scholar
Bates D, Machler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.
Google Scholar
Dixon P. Vegan, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.
Google Scholar
McMurdie PJ, Holmes S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. Plos One. 2013;8:e61217.
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Google Scholar
De Cáceres M, Legendre P, Moretti M. Improving indicator species analysis by combining groups of sites. Oikos. 2010;119:1674–84.
Google Scholar
Hartman K, van der Heijden MGA, Wittwer RA, Banerjee S, Walser JC, Schlaeppi K. Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome. 2018;6:14.
Google Scholar
Aitchison J. A new approach to null correlations of proportions. Mathematical Geology. 1981;13:175–89.
Google Scholar
Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. Plos Comput Biol. 2015;11:e1004226.
Google Scholar
Cao YP, Lin W, Li HZ. Two-sample tests of high-dimensional means for compositional data. Biometrika. 2018;105:115–32.
Google Scholar
Csardi G, Nepusz T. The igraph software package for complex network research. InterJ Complex Syst. 2006;1695:1–9.
Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.
Google Scholar
Banerjee S, Schlaeppi K, van der Heijden MGA. Reply to ‘Can we predict microbial keystones?’. Nat Rev Microbiol. 2019;17:194–194.
Google Scholar
Zheng HP, Yang TJ, Bao YZ, He PP, Yang KM, Mei XL, et al. Network analysis and subsequent culturing reveal keystone taxa involved in microbial litter decomposition dynamics. Soil Biol Biochem. 2021;157:108230.
Google Scholar
Kardol P, Wardle DA. How understanding aboveground-belowground linkages can assist restoration ecology. Trends Ecol Evol. 2010;25:670–9.
Google Scholar
Wubs ERJ, van der Putten WH, Mortimer SR, Korthals GW, Duyts H, Wagenaar R, et al. Single introductions of soil biota and plants generate long-term legacies in soil and plant community assembly. Ecol Lett. 2019;22:1145–51.
Google Scholar
St-Denis A, Kneeshaw D, Belanger N, Simard S, Laforest-Lapointe I, Messier C. Species-specific responses to forest soil inoculum in planted trees in an abandoned agricultural field. Appl Soil Ecol. 2017;112:1–10.
Google Scholar
Kitto JAJ, Gray DP, Greig HS, Niyogi DK, Harding JS. Meta-community theory and stream restoration: evidence that spatial position constrains stream invertebrate communities in a mine impacted landscape. Restor Ecol. 2015;23:284–91.
Google Scholar
Ofek M, Hadar Y, Minz D. Ecology of root colonizing Massilia (Oxalobacteraceae). Plos One. 2012;7:e40117.
Google Scholar
Lyu D, Backer R, Smith DL. Three plant growth-promoting rhizobacteria alter morphological development, physiology, and flower yield of Cannabis sativa L. Ind Crop Prod. 2022;178:114583.
Google Scholar
Kulmatiski A, Beard KH. Long-term plant growth legacies overwhelm short-term plant growth effects on soil microbial community structure. Soil Biol Biochem. 2011;43:823–30.
Google Scholar
Brewer TE, Handley KM, Carini P, Gilbert JA, Fierer N. Genome reduction in an abundant and ubiquitous soil bacterium ‘Candidatus Udaeobacter copiosus’. Nat Microbiol. 2017;2:16198.
Google Scholar
Reme J. Development and present state of close-to-nature silviculture. J Landscape Ecol. 2018;11:17–32.
Google Scholar
Source: Ecology - nature.com