Dauvin, J. C. et al. The well sorted fine sand community from the western Mediterranean Sea: A resistant and resilient marine habitat under diverse human pressures. Environ. Pollut. 224, 336–351 (2017).
Google Scholar
Obolewski, K. & Glińska-Lewczuk, K. Connectivity and complexity of coastal lakes as determinants for their restoration-A case study of the southern Baltic Sea. Ecol. Eng. 155, 1700 (2020).
Google Scholar
Dobrowolski, Z. Occurrence of macrobenthos in different littoral habitats of the polymictic Lebsko lake. Ekologia Polska 42, 19–40 (1994).
Paturej, E., Gutkowska, A. & Durczak, K. Biodiversity and indicative role of zooplankton in the shallow macrophyte-dominated lake Łuknajno. Pol. J. Nat. Sci. 27, 53–66 (2012).
Obolewski, K. et al. Patterns of salinity regime in coastal lakes based on structure of benthic invertebrates. PLoS ONE 13, 150 (2018).
Google Scholar
Lew, S., Glińska-Lewczuk, K. & Lew, M. The effects of environmental parameters on the microbial activity in peat-bog lakes. PLoS ONE 14, 179 (2019).
Bremner, J. Species’ traits and ecological functioning in marine conservation and management. J. Exp. Mar. Biol. Ecol. 366, 37–47 (2008).
Google Scholar
Törnroos, A. & Bonsdorff, E. Developing the multitrait concept for functional diversity: Lessons from a system rich in functions but poor in species. Ecol. Appl. 22, 2221–2236 (2012).
Google Scholar
Baldrighi, E. & Manini, E. Deep-sea meiofauna and macrofauna diversity and functional diversity: are they related?. Mar. Biodivers. 45, 469–488 (2015).
Google Scholar
Belley, R. & Snelgrove, P. V. R. Relative contributions of biodiversity and environment to benthic ecosystem functioning. Front. Mar. Sci. 3, 7598 (2016).
Google Scholar
Díaz, S. & Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).
Google Scholar
Gagic, V. et al. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc. R. Soc. B Biol. Sci. 282, 689 (2015).
Ding, N. et al. Different responses of functional traits and diversity of stream macroinvertebrates to environmental and spatial factors in the Xishuangbanna watershed of the upper Mekong River Basin, China. Sci. Total Environ. 574, 288–299 (2017).
Google Scholar
Kenny, A. J. et al. Assessing cumulative human activities, pressures, and impacts on North Sea benthic habitats using a biological traits approach. ICES J. Mar. Sci. 75, 1080–1092 (2018).
Google Scholar
Llanos, E. N., Saracho Bottero, M. A., Jaubet, M. L., Elías, R. & Garaffo, G. V. Functional diversity in the intertidal macrobenthic community at sewage-affected shores from Southwestern Atlantic. Mar. Pollut. Bull. 157, 7448 (2020).
Google Scholar
Paganelli, D., Marchini, A. & Occhipinti-Ambrogi, A. Functional structure of marine benthic assemblages using Biological Traits Analysis (BTA): A study along the Emilia-Romagna coastline (Italy, North-West Adriatic Sea). Estuar. Coast. Shelf Sci. 96, 245–256 (2012).
Google Scholar
Nasi, F. et al. Functional biodiversity of marine soft-sediment polychaetes from two Mediterranean coastal areas in relation to environmental stress. Mar. Environ. Res. 137, 121–132 (2018).
Google Scholar
Harwell, M. A. et al. Conceptual framework for assessing ecosystem health. Integr. Environ. Assess. Manag. 15, 544–564 (2019).
Google Scholar
Hu, C. et al. Macrobenthos functional trait responses to heavy metal pollution gradients in a temperate lagoon. Environ. Pollut. 253, 1107–1116 (2019).
Google Scholar
Ramsay, K., Kaiser, M. J. & Hughes, R. N. Responses of benthic scavengers to fishing disturbance by towed gears in different habitats. J. Exp. Mar. Biol. Ecol. 224, 4458 (1998).
Google Scholar
Sigala, K., Reizopoulou, S., Basset, A. & Nicolaidou, A. Functional diversity in three Mediterranean transitional water ecosystems. Estuar. Coast. Shelf Sci. 110, 202–209 (2012).
Google Scholar
de Loiola, P. P., Cianciaruso, M. V., Silva, I. A. & Batalha, M. A. Functional diversity of herbaceous species under different fire frequencies in Brazilian savannas. Flora Morphol. Distrib. Funct. Ecol. Plants 205, 674–681 (2010).
Google Scholar
Schleuter, D., Daufresne, M., Massol, F. & Argillier, C. A user’s guide to functional diversity indices. Ecological Monographs vol. 80 http://www.scopus.com/scopus/search/form.urli (2010).
Wan, H. W. M. R., Cooper, K. M., Froján, C. R. S. B., Defew, E. C. & Paterson, D. M. Impacts of physical disturbance on the recovery of a macrofaunal community: A comparative analysis using traditional and novel approaches. Ecol. Indicators 12, 37–45 (2012).
Google Scholar
Millet, B. & Guelorget, O. Spatial and seasonal variability in the relationships between benthic communities and physical environment in a lagoon ecosystem. Mar. Ecol. Prog. Ser. 108, 161–174 (1994).
Google Scholar
McLusky, D. S. & Elliott, M. The Estuarine Ecosystem (Oxford University Press, 2004). https://doi.org/10.1093/acprof:oso/9780198525080.001.0001.
Google Scholar
Mrozińska, N. & Bąkowska, M. Effects of heavy metals in lake water and sediments on bottom invertebrates inhabiting the brackish coastal lake Łebsko on the southern baltic coast. Int. J. Environ. Res. Public Health 17, 1–19 (2020).
Google Scholar
Petchey, O. L. & Gaston, K. J. Functional diversity: Back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).
Google Scholar
Villéger, S., Miranda, J. R., Hernández, D. F. & Mouillot, D. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecol. Appl. 20, 1512–1522 (2010).
Google Scholar
Dolédec, S. & Statzner, B. Theoretical habitat templets, species traits, and species richness: 548 plant and animal species in the Upper Rhône River and its floodplain. Freshw. Biol. 31, 523–538 (1994).
Google Scholar
Usseglio-Polatera, P., Bournaud, M., Richoux, P. & Tachet, H. Biomonitoring through biological traits of benthic macroinvertebrates: How to use species trait databases?. Hydrobiologia 422, 153–162 (2000).
Google Scholar
Charvet, S., Statzner, B., Usseglio-Polatera, P. & Dumont, B. Traits of benthic macroinvertebrates in semi-natural French streams: An initial application to biomonitoring in Europe. Freshw. Biol. 43, 277–296 (2000).
Google Scholar
Statzner, B., Dolédec, S. & Hugueny, B. Biological trait composition of European stream invertebrate communities: Assessing the effects of various trait filter types. Ecography 27, 470–488 (2004).
Google Scholar
Bremner, J., Rogers, S. I. & Frid, C. L. J. Assessing functional diversity in marine benthic ecosystems: A comparison of approaches. Mar Ecol Prog Ser 254, 5589 (2003).
Google Scholar
Tillin, H., Hiddink, J., Jennings, S. & Kaiser, M. Chronic bottom trawling alters the functional composition of benthic invertebrate communities on a sea-basin scale. Mar. Ecol. Prog. Ser. 318, 31–45 (2006).
Google Scholar
Marchini, A., Munari, C. & Mistri, M. Functions and ecological status of eight Italian lagoons examined using biological traits analysis (BTA). Mar. Pollut. Bull. 56, 1076–1085 (2008).
Google Scholar
Boikova, E., Botva, U. & Līcīte, V. Implementation of trophic status index in brackish water quality assessment of baltic coastal waters. Proc. Latv. Acad. Sci. Sect. B 62, 115–119 (2008).
Google Scholar
Wielgat-Rychert, M., Jarosiewicz, A., Ficek, D., Pawlik, M. & Rychert, K. Nutrient fluxes and their impact on the phytoplankton in a Shallow Coastal Lake. Polish J. Environ. Stud. 24, 7780 (2015).
Google Scholar
Kruk, C., Devercelli, M. & Huszar, V. L. Reynolds Functional Groups: A trait-based pathway from patterns to predictions. Hydrobiologia 848, 113–129 (2021).
Google Scholar
Trojanowski, J., Trojanowska, C. & Korzeniewski, K. Trophic state of coastal lakes. Polish Arch. Hydrobiol. 38, 23–34 (1975).
Astel, A. M., Bigus, K., Obolewski, K. & Glińska-Lewczuk, K. Spatiotemporal assessment of water chemistry in intermittently open/closed coastal lakes of Southern Baltic. Estuar. Coast. Shelf Sci. 182, 47–59 (2016).
Google Scholar
Choiński, A. Changes in morphometrics of the coastal lakes. in Hydroecological Determinants of Functioning of Southern Baltic Coastal Lakes (eds. Obolewski, K., Astel, A. & Kujawa, R.) 26–37 (PWN, 2017).
Obolewski, K., Glińska-Lewczuk, K., Bąkowska, M., Szymańska, M. & Mrozińska, N. Patterns of phytoplankton composition in coastal lakes differed by connectivity with the Baltic Sea. Sci. Total Environ. 631–632, 951–961 (2018).
Google Scholar
Szymańska-Walkiewicz, M., Glińska-Lewczuk, K., Burandt, P. & Obolewski, K. Phytoplankton sensitivity to heavy metals in Baltic Coastal Lakes. Int. J. Environ. Res. Public Health 19, 4131 (2022).
Google Scholar
Mrozińska, N., Glińska-Lewczuk, K. & Obolewski, K. Salinity as a key factor on the benthic fauna diversity in the coastal lakes. Animals 11, 7440 (2021).
Google Scholar
Bremner, J., Rogers, S. I. & Frid, C. L. J. Methods for describing ecological functioning of marine benthic assemblages using biological traits analysis (BTA). Ecol. Ind. 6, 609–622 (2006).
Google Scholar
Papageorgiou, N., Sigala, K. & Karakassis, I. Changes of macrofaunal functional composition at sedimentary habitats in the vicinity of fish farms. Estuar. Coast. Shelf Sci. 83, 561–568 (2009).
Google Scholar
Lam-Gordillo, O., Baring, R. & Dittmann, S. Ecosystem functioning and functional approaches on marine macrobenthic fauna: A research synthesis towards a global consensus. Ecol Indic 115, 5589 (2020).
Google Scholar
Kołodziejczyk, A. & Koperski, P. Bezkręgowce słodkowodne Polski: klucz do oznaczania oraz podstawy biologii i ekologii makrofauny. (Wydawnictwa Uniwersytetu Warszawskiego, 2000).
Wiederholm, Torgny. Chironomidae of the Holarctic Region: Keys and Diagnoses. Part 1: larvae. (1983).
Antsulevich, A. et al. Helcom, 2012. Development of a set of core indicators: Interim report of the HELCOM CORESET project. PART A. Description of the selection process. (2012).
Piechocki, A. & Wawrzyniak-Wydrowska, B. Guide to Freshwater and Marine Mollusca of Poland. (2016).
Zettler, M. L. et al. Biodiversity gradient in the Baltic Sea: A comprehensive inventory of macrozoobenthos data. Helgol. Mar. Res. 68, 49–57 (2014).
Google Scholar
Palomares, M. L. D. & Pauly, D. SeaLifeBase. https://www.sealifebase.ca/ (2021).
MarLIN. BIOTIC-biological traits information catalogue. Marine Life Information Network. Plymouth: Marine Biological Association of the UK. http://www.marlin.ac.uk/biotic/ (2006).
Horton, T. et al. World Register of Marine Species (WoRMS). https://www.marinespecies.org (2021).
Chevene, F., Doleadec, S. & Chessel, D. A fuzzy coding approach for the analysis of long-term ecological data. Freshw. Biol. 31, 295–309 (1994).
Google Scholar
Oug, E., Fleddum, A., Rygg, B. & Olsgard, F. Biological traits analyses in the study of pollution gradients and ecological functioning of marine soft bottom species assemblages in a fjord ecosystem. J. Exp. Mar. Biol. Ecol. 432–433, 94–105 (2012).
Google Scholar
Egres, A. G., Hatje, V., Miranda, D. A., Gallucci, F. & Barros, F. Functional response of tropical estuarine benthic assemblages to perturbation by Polycyclic Aromatic Hydrocarbons. Ecol. Ind. 96, 229–240 (2019).
Google Scholar
Charvet, S., Kosmala, A. & Statzner, B. Biomonitoring through biological traits of benthic macroinvertebrates: Perspectives for a general tool in stream management. Fundam. Appl. Limnol. 142, 415–432 (1998).
Google Scholar
Clarke, K. R. & Gorley, R. N. PRIMER v6: User Manual/Tutorial. (2006).
Dobrowolski, Z. Density, biomass, and distribution of benthic invertebrates in the mid-lake zone of the coastal Lake Gardno. Oceanol. Stud. 30, 39–58 (2001).
Michaud, E., Desrosiers, G., Mermillod-Blondin, F., Sundby, B. & Stora, G. The functional group approach to bioturbation: II. The effects of the Macoma balthica community on fluxes of nutrients and dissolved organic carbon across the sediment-water interface. J. Exp. Mar. Biol. Ecol. 337, 178–189 (2006).
Google Scholar
Taurusman, A. A. Community structure of macrozoobenthic feeding guilds in responses to eutrophication in Jakarta Bay. Biodivers. J. Biol. Divers. 11, 998 (2010).
Google Scholar
Uwadiae, R. E. Macroinvertebrates functional feeding groups as indices of biological assessment in a tropical aquatic ecosystem: implications for ecosystem functions. New York Sci. J. 3, 778 (2010).
Obolewski, K., Glińska-Lewczuk, K., Sidoruk, M. & Szymańska, M. M. Response of benthic fauna to habitat heterogeneity in a shallow temperate lake. Animals 11, 558 (2021).
Google Scholar
Rhoads, D. C. Organism-sediment relations on the muddy sea floor. in Oceanography and Marine Biology: An Annual Review. vol. 12 263–300 (Aberdeen University Press/Allen & Unwin, 1974).
Thrush, S. F., Hewitt, J. E., Gibbs, M., Lundquist, C. & Norkko, A. Functional role of large organisms in intertidal communities: Community effects and ecosystem function. Ecosystems 9, 1029–1040 (2006).
Google Scholar
Frid, C. L. J., Harwood, K. G., Hall, S. J. & Hall, J. A. Long-term changes in the benthic communities on North Sea fishing grounds. in ICES Journal of Marine Science vol. 57 1303–1309 (Academic Press, 2000).
Bradshaw, C., Veale, L. O. & Brand, A. R. The role of scallop-dredge disturbance in long-term changes in Irish Sea benthic communities: A re-analysis of an historical dataset. J. Sea Res. 47, 161–184 (2002).
Google Scholar
Cañedo-Argüelles, M. et al. Can salinity trigger cascade effects on streams? A mesocosm approach. Sci. Total Environ. 540, 3–10 (2016).
Google Scholar
Herbst, D. B. Salinity controls on trophic interactions among invertebrates and algae of solar evaporation ponds in the Mojave Desert and relation to shorebird foraging and selenium risk. Wetlands 26, 475–485 (2006).
Google Scholar
Merritt, R. W. et al. Development and application of a macroinvertebrate functional-group approach in the bioassessment of remnant river oxbows in southwest Florida. Am. Benthol. Soc. 21, 550 (2002).
Google Scholar
de Roos, A. M., Persson, L. & McCauley, E. The influence of size-dependent life-history traits on the structure and dynamics of populations and communities. Ecol. Lett. 6, 473–487 (2003).
Google Scholar
Reizopoulou, S. & Nicolaidou, A. Index of size distribution (ISD): A method of quality assessment for coastal lagoons. Hydrobiologia 577, 141–149 (2007).
Google Scholar
Basset, A., Pinna, M., Sabetta, L., Barbone, E. & Galuppo, N. Hierarchical scaling of biodiversity in lagoon ecosystems. Trans. Waters Bull. 2, 75–86 (2008).
Basset, A. et al. A benthic macroinvertebrate size spectra index for implementing the Water Framework Directive in coastal lagoons in Mediterranean and Black Sea ecoregions. Ecol. Ind. 12, 72–83 (2012).
Google Scholar
Robson, B. J., Barmuta, L. A. & Fairweather, P. G. Methodological and conceptual issues in the search for a relationship between animal body-size distributions and benthic habitat architecture. Mar. Freshw. Res. 56, 1–11 (2005).
Google Scholar
Parry, D. M., Kendall, M. A., Rowden, A. A. & Widdicombe, S. Species body size distribution patterns of marine benthic macrofauna assemblages from contrasting sediment types. J. Mar. Biol. Assoc. U.K. 79, 793–801 (1999).
Google Scholar
Netto, S. A., Domingos, A. M. & Kurtz, M. N. Effects of artificial breaching of a temporarily open/closed estuary on benthic macroinvertebrates (Camacho Lagoon, Southern Brazil). Estuaries Coasts 35, 1069–1081 (2012).
Google Scholar
Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004).
Google Scholar
Montefalcone, M., Parravicini, V. & Bianchi, C. N. Quantification of Coastal Ecosystem Resilience. in Treatise on Estuarine and Coastal Science 49–70 (Elsevier, 2011). https://doi.org/10.1016/B978-0-12-374711-2.01003-2.
Sasaki, T., Furukawa, T., Iwasaki, Y., Seto, M. & Mori, A. S. Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances. Ecol. Ind. 57, 395–408 (2015).
Google Scholar
Smee, D. L., Reustle, J. W., Belgrad, B. A. & Pettis, E. L. Storms promote ecosystem resilience by alleviating fishing. Curr. Biol. 30, R869–R870 (2020).
Google Scholar
Gilby, B. L. et al. Umbrellas can work under water: Using threatened species as indicator and management surrogates can improve coastal conservation. Estuar. Coast. Shelf Sci. 199, 132–140 (2017).
Google Scholar
Henderson, C. J. et al. Landscape transformation alters functional diversity in coastal seascapes. Ecography 43, 138–148 (2020).
Google Scholar
Yeager, L. A., Geyer, J. K. & Fodrie, F. J. Trait sensitivities to seagrass fragmentation across spatial scales shape benthic community structure. J. Anim. Ecol. 88, 1743–1754 (2019).
Google Scholar
Darr, A., Gogina, M. & Zettler, M. L. Functional changes in benthic communities along a salinity gradient- a western Baltic case study. J. Sea Res. 85, 315–324 (2014).
Google Scholar
Statzner, B., Bady, P., Dolédec, S. & Schöll, F. Invertebrate traits for the biomonitoring of large European rivers: An initial assessment of trait patterns in least impacted river reaches. Freshw. Biol. 50, 2136–2161 (2005).
Google Scholar
Source: Ecology - nature.com