in

RNA viromes from terrestrial sites across China expand environmental viral diversity

  • Shi, M. et al. Redefining the invertebrate RNA virosphere. Nature 540, 539–543 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhang, Y.-Z., Shi, M. & Holmes, E. C. Using metagenomics to characterize an expanding virosphere. Cell 172, 1168–1172 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Li, C.-X. et al. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. eLife 4, e05378 (2015).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Starr, E. P., Nuccio, E. E., Pett-Ridge, J., Banfield, J. F. & Firestone, M. K. Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil. Proc. Natl Acad. Sci. USA 116, 25900–25908 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wolf, Y. I. et al. Doubling of the known set of RNA viruses by metagenomic analysis of an aquatic virome. Nat. Microbiol. 5, 1262–1270 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zayed, A. A. et al. Cryptic and abundant marine viruses at the evolutionary origins of Earth’s RNA virome. Science 376, 156–162 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Simmonds, P. et al. Virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 15, 161–168 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Trubl, G., Hyman, P., Roux, S. & Abedon, S. T. Coming-of-age characterization of soil viruses: a user’s guide to virus isolation, detection within metagenomes, and viromics. Soil Syst. 4, 23 (2020).

    CAS 
    Article 

    Google Scholar 

  • Jin, M. et al. Diversities and potential biogeochemical impacts of mangrove soil viruses. Microbiome 7, 58 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Trubl, G. et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems 3, e00076-18 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Steward, G. F. et al. Are we missing half of the viruses in the ocean? ISME J. 7, 672–679 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Paul, K. I., Scott Black, A. & Conyers, M. K. in Advances in Agronomy. Sparks, D.L., Vol. 78 187–214 (Elsevier, 2003).

  • Urayama, S., Takaki, Y. & Nunoura, T. FLDS: a comprehensive dsRNA sequencing method for intracellular RNA virus surveillance. Microbes Environ. 31, 33–40 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Armbrust, E. V. The life of diatoms in the world’s oceans. Nature 459, 185–192 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wu, W., Jin, Y., Bai, F. & Jin, S. in Molecular Medical Microbiology. Tang, Y.W., Liu, D., Schwartzman, J., Sussman, M., Poxton, I., 753–767 (Elsevier, 2015).

  • Cooney, S., O’Brien, S., Iversen, C. & Fanning, S. in Encyclopedia of Food Safety. Motarjemi, Y., 433–441 (Elsevier, 2014).

  • Geoghegan, J. L. et al. Hidden diversity and evolution of viruses in market fish. Virus Evol. 4, vey031 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lauber, C. et al. Deciphering the origin and evolution of hepatitis B viruses by means of a family of non-enveloped fish viruses. Cell Host Microbe 22, 387–399.e6 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shi, M., Zhang, Y.-Z. & Holmes, E. C. Meta-transcriptomics and the evolutionary biology of RNA viruses. Virus Res. 243, 83–90 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Turnbull, O. M. H. et al. Meta-transcriptomic identification of divergent Amnoonviridae in Fish. Viruses 12, 1254 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • Bauermann, F. V., Hause, B., Buysse, A. R., Joshi, L. R. & Diel, D. G. Identification and genetic characterization of a porcine hepe-astrovirus (bastrovirus) in the United States. Arch. Virol. 164, 2321–2326 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Oude Munnink, B. B. et al. A novel astrovirus-like RNA virus detected in human stool. Virus Evol. 2, vew005 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Williamson, K. E. et al. Estimates of viral abundance in soils are strongly influenced by extraction and enumeration methods. Biol. Fertil. Soils 49, 857–869 (2013).

    Article 

    Google Scholar 

  • Wang, C., Liu, D. & Bai, E. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biol. Biochem. 120, 126–133 (2018).

    CAS 
    Article 

    Google Scholar 

  • Wang, Q. et al. Effects of nitrogen and phosphorus inputs on soil bacterial abundance, diversity, and community composition in Chinese fir plantations. Front. Microbiol. 9, 1543 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Payne, S. in Viruses. Payne, S., 219–226 (Elsevier, 2017).

  • Hillman, B. I. & Cai, G. The family Narnaviridae. Adv. Virus Res. 86, 149–176 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Wolf, Y. I. et al. Origins and evolution of the global RNA virome. mBio 9, e02329-18 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analysis in R. Bioinformatics 35, 526–528 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).

    Article 

    Google Scholar 

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. L. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gupta, R., Jung, E. & Brunak, S. NetNGlyc 1.0 Server (2017). DTU Health Tech. http://www.cbs.dtu.dk/services/NetNGlyc/

  • Mirdita, M. et al. Uniclust databases of clustered and deeply annotated protein sequences and alignments. Nucleic Acids Res. 45, D170–D176 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Remmert, M., Biegert, A., Hauser, A. & Söding, J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 9, 173–175 (2012).

    CAS 
    Article 

    Google Scholar 

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lagkouvardos, I., Fischer, S., Kumar, N. & Clavel, T. Rhea: a transparent and modular R pipeline for microbial profiling based on 16S rRNA gene amplicons. PeerJ 5, e2836 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McLeod, A., Xu, C. & Lai, Y. Package ‘bestglm’. CRAN. (2020).

  • Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    The response of wheat and its microbiome to contemporary and historical water stress in a field experiment

    New hardware offers faster computation for artificial intelligence, with much less energy