Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, et al. Fungal biogeography. Global diversity and geography of soil fungi. Science (80-). 2014;346:1256688.
Google Scholar
Oliverio AM, Geisen S, Delgado Baquerizo M, Maestre FT, Turner BL, Fierer N. The global-scale distributions of soil protists and their contributions to belowground systems. Sci Adv. 2020;6:eaax8787.
Google Scholar
Delgado Baquerizo M, Oliverio AM, Brewer TE, Benavent-Gonzalez A, Eldridge DJ, Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–5.
Google Scholar
Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, et al. Global biogeography of highly diverse protistan communities in soil. ISME J. 2012;7:652–9.
Google Scholar
Crowther TW, van den Hoogen J, Wan J, Mayes MA, Keiser AD, Mo L, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365:eaav0550.
Google Scholar
Xiong W, Jousset A, Li R, Delgado-Baquerizo M, Bahram M, Logares R, et al. A global overview of the trophic structure within microbiomes across ecosystems. Environ Int. 2021;151:106438.
Google Scholar
Singh BK, Bardgett RD, Smith P, Reay DS. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol. 2010;8:779–90.
Google Scholar
Nowicka B, Kruk J. Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution. Microbiol Res. 2016;186-7:99–118.
Google Scholar
Hamard S, Céréghino R, Barret M, Sytiuk A, Lara E, Dorrepaal E, et al. Contribution of microbial photosynthesis to peatland carbon uptake along a latitudinal gradient. J Ecol. 2021;109:3424–41.
Google Scholar
Seppey CVW, Singer D, Dumack K, Fournier B, Belbahri LL, Mitchell EAD, et al. Distribution patterns of soil microbial eukaryotes suggests widespread algivory by phagotrophic protists as an alternative pathway for nutrient cycling. Soil Biol Biochem. 2017;112:68–76.
Google Scholar
Schmidt O, Dyckmans J, Schrader S. Photoautotrophic microorganisms as a carbon source for temperate soil invertebrates. Biol Lett. 2016;12:20150646.
Google Scholar
Halvorson HM, Barry JR, Lodato MB, Findlay RH, Francoeur SN, Kuehn KA. Periphytic algae decouple fungal activity from leaf litter decomposition via negative priming. Funct Ecol. 2019;33:188–201.
Google Scholar
Wyatt KH, Turetsky MR. Algae alleviate carbon limitation of heterotrophic bacteria in a boreal peatland. J Ecol. 2015;103:1165–71.
Google Scholar
Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, et al. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci. 2012;5:459–62.
Google Scholar
Jassey VEJ, Walcker R, Kardol P, Geisen S, Heger T, Lamentowicz M, et al. Contribution of soil algae to the global carbon cycle. New Phytol. 2022;234:64–76.
Google Scholar
Tahon G, Tytgat B, Willems A. Diversity of phototrophic genes suggests multiple bacteria may be able to exploit sunlight in exposed soils from the Sør Rondane Mountains, East Antarctica. Front Microbiol. 2016;7:2026.
Google Scholar
Maier S, Tamm A, Wu D, Caesar J, Grube M, Weber B. Photoautotrophic organisms control microbial abundance, diversity, and physiology in different types of biological soil crusts. ISME J. 2018;12:1032–46.
Google Scholar
Büdel B. Ecology and diversity of rock-inhabiting cyanobacteria in tropical regions. Eur J Phycol. 1999;34:361–70.
Google Scholar
Hamard S, Küttim M, Céréghino R, Jassey VEJ. Peatland microhabitat heterogeneity drives phototrophic microbes distribution and photosynthetic activity. Environ Microbiol. 2021;23:6811–27.
Google Scholar
Cano-Díaz C, Maestre FT, Eldridge DJ, Singh BK, Bardgett RD, Fierer N, et al. Contrasting environmental preferences of photosynthetic and non-photosynthetic soil cyanobacteria across the globe. Glob Ecol Biogeogr. 2020;29:2025–38.
Google Scholar
Rodriguez-Caballero E, Belnap J, Büdel B, Crutzen PJ, Andreae MO, Pöschl U, et al. Dryland photoautotrophic soil surface communities endangered by global change. Nat Geosci. 2018;11:185–9.
Google Scholar
Pointing SB, Belnap J. Microbial colonization and controls in dryland systems. Nat Rev Microbiol. 2012;10:551–62.
Google Scholar
Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, et al. Global biogeography of highly diverse protistan communities in soil. ISME J. 2013;7:652–9.
Google Scholar
Küttim L, Küttim M, Puusepp L, Sugita S. The effects of ecotope, microtopography and environmental variables on diatom assemblages in hemiboreal bogs in Northern Europe. Hydrobiologia. 2017;792:137–49.
Google Scholar
Mahé F, de Vargas C, Bass D, Czech L, Stamatakis A, Lara E, et al. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat Ecol Evol. 2017;1:91.
Google Scholar
Lindo Z, Gonzalez A. The Bryosphere: An Integral and Influential Component of the Earth’s Biosphere. Ecosystems. 2010;13:612–27.
Google Scholar
Sporn SG, Bos MM, Kessler M, Gradstein SR. Vertical distribution of epiphytic bryophytes in an Indonesian rainforest. Biodivers Conserv. 2010;19:745–60.
Google Scholar
Cornelissen JHC, Lang SI, Soudzilovskaia NA, During HJ. Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann Bot. 2007;99:987–1001.
Google Scholar
Van Breemen N. How Sphagnum bogs down other plants. Trends Ecol Evol. 1995;10:270–5.
Google Scholar
Jonsson M, Kardol P, Gundale MJ, Bansal S, Nilsson M-C, Metcalfe DB, et al. Direct and Indirect Drivers of Moss Community Structure, Function, and Associated Microfauna Across a Successional Gradient. Ecosystems. 2014;18:1–16.
Bragina A, Berg C, Cardinale M, Shcherbakov A, Chebotar V, Berg G. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle. ISME J. 2012;6:802–13.
Google Scholar
Bay G, Nahar N, Oubre M, Whitehouse MJ, Wardle DA, Zackrisson O, et al. Boreal feather mosses secrete chemical signals to gain nitrogen. New Phytol. 2013;200:54–60.
Google Scholar
Kip N, van Winden JF, Pan Y, Bodrossy L, Reichart G-J, Smolders AJP, et al. Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nat Geosci. 2010;3:617–21.
Google Scholar
Lindo Z, Nilsson M-C, Gundale MJ. Bryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change. Glob Chang Biol. 2013;19:2022–35.
Google Scholar
Jassey VEJ, Shimano S, Dupuy C, Toussaint M-L, Gilbert D. Characterizing the feeding habits of the testate amoebae Hyalosphenia papilio and Nebela tincta along a narrow ‘fen-bog’ gradient using digestive vacuole content and 13C and 15N isotopic analyses. Protist. 2012;163:451–64.
Google Scholar
Raanan H, Oren N, Treves H, Keren N, Ohad I, Berkowicz SM, et al. Towards clarifying what distinguishes cyanobacteria able to resurrect after desiccation from those that cannot: The photosynthetic aspect. Biochim Biophys Acta – Bioenerg. 2016;1857:715–22.
Google Scholar
Puente-Sánchez F, Arce-Rodríguez A, Oggerin M, García-Villadangos M, Moreno-Paz M, Blanco Y, et al. Viable cyanobacteria in the deep continental subsurface. Proc Natl Acad Sci USA. 2018;115:10702–7.
Google Scholar
Küttim M, Küttim L, Ilomets M, Laine AM. Controls of Sphagnum growth and the role of winter. Ecol Res. 2020;35:219–34.
Google Scholar
Jassey VEJ, Chiapusio G, Mitchell EAD, Binet P, Toussaint M-L, Gilbert D. Fine-scale horizontal and vertical micro-distribution patterns of testate amoebae along a narrow Fen/Bog gradient. Microb Ecol. 2011;61:374–85.
Google Scholar
Wilken S, Huisman J, Naus-Wiezer S, Van Donk E. Mixotrophic organisms become more heterotrophic with rising temperature. Ecol Lett. 2012;16:225–33.
Google Scholar
Jassey VEJ, Signarbieux C. Effects of climate warming on Sphagnumphotosynthesis in peatlands depend on peat moisture and species‐specific anatomical traits. Glob Chang Biol. 2019;182:12–65.
McDonald D, Price MN, Goodrich J, Nawrocki EP, Desantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2011;6:610–8. 2012 63
Google Scholar
Lozupone CA, Stombaugh J, Gonzalez A, Ackermann G, Wendel D, Vázquez-Baeza Y, et al. Meta-analyses of studies of the human microbiota. Genome Res. 2013;23:1704–14.
Google Scholar
Pawluczyk M, Weiss J, Links MG, Egaña Aranguren M, Wilkinson MD, Egea-Cortines M. Quantitative evaluation of bias in PCR amplification and next-generation sequencing derived from metabarcoding samples. Anal Bioanal Chem. 2015;407:1841–8.
Google Scholar
Ramirez KS, Knight CG, de Hollander M, Brearley FQ, Constantinides B, Cotton A, et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat Microbiol. 2018;3:189–96.
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2019.
Opelt K, Berg C, Schönmann S, Eberl L, Berg G. High specificity but contrasting biodiversity of Sphagnum-associated bacterial and plant communities in bog ecosystems independent of the geographical region. ISME J. 2007;1:502–16.
Google Scholar
Hamard S, Robroek BJM, Allard P-M, Signarbieux C, Zhou S, Saesong T, et al. Effects of Sphagnum Leachate on Competitive Sphagnum Microbiome Depend on Species and Time. Front Microbiol. 2019;10:3317.
Google Scholar
Holland-Moritz H, Stuart J, Lewis LR, Miller S, Mack MC, McDaniel SF, et al. Novel bacterial lineages associated with boreal moss species. Environ Microbiol. 2018;20:2625–38.
Google Scholar
Singer D, Metz S, Unrein F, Shimano S, Mazei Y, Mitchell EAD, et al. Contrasted Micro-Eukaryotic Diversity Associated with Sphagnum Mosses in Tropical, Subtropical and Temperate Climatic Zones. Microb Ecol. 2019;78:714–24.
Google Scholar
Holland-Moritz H, Stuart JEM, Lewis LR, Miller SN, Mack MC, Ponciano JM, et al. The bacterial communities of Alaskan mosses and their contributions to N2-fixation. Microbiome. 2021;9:1–14.
Google Scholar
Righetti D, Vogt M, Gruber N, Psomas A, Zimmermann NE. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci Adv. 2019;5:eaau6253.
Google Scholar
Amend AS, Cobian GM, Laruson AJ, Remple K, Tucker SJ, Poff KE, et al. Phytobiomes are compositionally nested from the ground up. PeerJ. 2019;2019:e6609.
Google Scholar
Dedysh SN, Pankratov TA, Belova SE, Kulichevskaya IS, Liesack W. Phylogenetic analysis and in situ identification of Bacteria community composition in an acidic Sphagnum peat bog. Appl Environ Microbiol. 2006;72:2110–7.
Google Scholar
Robroek BJM, Martí M, Svensson BH, Dumont MG, Veraart AJ, Jassey VEJ. Rewiring of peatland plant–microbe networks outpaces species turnover. Oikos. 2021;303:605–15.
Holland-Moritz H, Stuart J, Lewis LR, Miller S, Mack MC, Mcdaniel SF, et al. Novel bacterial lineages associated with boreal moss species. Environ Microbiol. 2018;20:2625–38.
Google Scholar
Sytiuk A, Céréghino R, Hamard S, Delarue F, Guittet A, Barel JM, et al. Predicting the structure and functions of peatland microbial communities from Sphagnum phylogeny, anatomical and morphological traits and metabolites. J Ecol. 2021;1365-2745:13728.
Rudolph H, Samland J. Occurrence and metabolism of sphagnum acid in the cell walls of bryophytes. Phytochemistry. 1985;24:745–9.
Google Scholar
Chiapusio G, Jassey VEJ, Bellvert F, Comte G, Weston LA, Delarue F, et al. Sphagnum species modulate their phenolic profiles and mycorrhizal colonization of surrounding Andromeda polifolia along peatland microhabitats. J Chem Ecol. 2018;27:1–12.
Rasmussen S, Wolff C, Rudolph H. Compartmentalization of phenolic constituents in sphagnum. Phytochemistry. 1995;38:35–39.
Google Scholar
Sytiuk A, Céréghino R, Hamard S, Delarue F, Dorrepaal E, Küttim M, et al. Biochemical traits enhance the trait concept in Sphagnum ecology. Oikos 2022;00:00.
Hájek T, Ballance S, Limpens J, Zijlstra M, Verhoeven JTA. Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed decomposition in vitro. Biogeochemistry. 2011;103:45–57.
Google Scholar
Bengtsson F, Rydin Hå, Hájek T. Biochemical determinants of litter quality in 15 species of Sphagnum. Plant Soil. 2018;425:161–76.
Google Scholar
Fudyma JD, Lyon J, AminiTabrizi R, Gieschen H, Chu RK, Hoyt DW, et al. Untargeted metabolomic profiling of Sphagnum fallax reveals novel antimicrobial metabolites. Plant Direct. 2019;3:e00179–17.
Google Scholar
He L, Mazza Rodrigues JL, Soudzilovskaia NA, Barceló M, Olsson PA, Song C, et al. Global biogeography of fungal and bacterial biomass carbon in topsoil. Soil Biol Biochem. 2020;151:108024.
Google Scholar
Hanson CA. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol. 2012;10:497–506.
Google Scholar
Waddington JM, Morris PJ, Kettridge N, Granath G, Thompson DK, Moore PA. Hydrological feedbacks in northern peatlands. Ecohydrology. 2015;8:113–27.
Google Scholar
Reczuga MK, Lamentowicz M, Mulot M, Mitchell EAD, Buttler A, Chojnicki B, et al. Predator–prey mass ratio drives microbial activity under dry conditions in Sphagnum peatlands. Ecol Evol. 2018;8:5752–64.
Google Scholar
Ritchie RJ. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res. 2006;89:27–41.
Google Scholar
Perrine Z, Negi S, Sayre RT. Optimization of photosynthetic light energy utilization by microalgae. Algal Res. 2012;1:134–42.
Google Scholar
Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 2012;46:1394–407.
Google Scholar
Gorbunov MY, Falkowski PG. Using chlorophyll fluorescence kinetics to determine photosynthesis in aquatic ecosystems. Limnol Ocean. 2020;66:1–13.
Google Scholar
MacIntyre HL, Kana TM, Anning T, Geider RJ. Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol. 2002;38:17–38.
Google Scholar
Grote EE, Belnap J, Housman DC, Sparks JP. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change. Glob Chang Biol. 2010;16:2763–74.
Google Scholar
Robarts RD, Zohary T. Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom‐forming cyanobacteria. New Zealand Journal of Marine and Freshwater Research. 1987;21:391–9.
Google Scholar
Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Pongratz J, Manning AC, et al. Global Carbon Budget 2017. Earth Syst Sci Data. 2018;10:405–48.
Google Scholar
Source: Ecology - nature.com