in

Rewetting global wetlands effectively reduces major greenhouse gas emissions

  • Lindgren, A., Hugelius, G. & Kuhry, P. Extensive loss of past permafrost carbon but a net accumulation into present-day soils. Nature 560, 219–222 (2018).

    Article 

    Google Scholar 

  • Nichols, J. E. & Peteet, D. M. Rapid expansion of northern peatlands and doubled estimate of carbon storage. Nat. Geosci. 12, 917–921 (2019).

    Article 

    Google Scholar 

  • Bridgham, S. D. et al. The carbon balance of North American wetlands. Wetlands 26, 889–916 (2006).

    Article 

    Google Scholar 

  • Dixon, M. J. R. et al. Tracking global change in ecosystem area: the wetland extent trends index. Biol. Conserv. 193, 27–35 (2016).

    Article 

    Google Scholar 

  • Darrah, S. E. et al. Improvements to the Wetland Extent Trends (WET) index as a tool for monitoring natural and human-made wetlands. Ecol. Indic. 99, 294–298 (2019).

    Article 

    Google Scholar 

  • Asselen, S. et al. Drivers of wetland conversion: a global meta-analysis. PLoS ONE 8, e81292 (2013).

    Article 

    Google Scholar 

  • Davidson, N. C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 65, 934–941 (2014).

    Article 

    Google Scholar 

  • Galatowitsch, S. M. in The Wetland Book II: Distribution, Description, and Conservation (eds Finlayson, C.M. et al.) 359–367 (Springer, 2018).

  • Limpert, K. E. et al. Reducing emissions from degraded floodplain wetlands. Front. Environ. Sci. 8, 8 (2020); https://doi.org/10.3389/fenvs.2020.00008

  • Laine, J. et al. Effect of water-level drawdown on global climatic warming: northern peatlands. AMBIO 25, 179–184 (1996).

    Google Scholar 

  • Ise, T. et al. High sensitivity of peat decomposition to climate change through water-table feedback. Nat. Geosci. 1, 763–766 (2008).

    Article 

    Google Scholar 

  • Saunois, M. et al. The global methane budget 2000–2017. Earth. Syst. Sci. Data 12, 1561–1623 (2020).

    Article 

    Google Scholar 

  • Leifeld, J. et al. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Change 9, 945–947 (2019).

    Article 

    Google Scholar 

  • Günther, A. et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. 11, 1644 (2020).

    Article 

    Google Scholar 

  • Hooijer, A. et al. Subsidence and carbon loss in drained tropical peatlands. Biogeoscience 9, 1053–1071 (2012).

    Article 

    Google Scholar 

  • Prananto, J. A. et al. Drainage increases CO2 and N2O emissions from tropical peat soils. Glob. Change Biol. 26, 4583–4600 (2020).

    Article 

    Google Scholar 

  • Jauhiainen, J. et al. Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration. Ecology 89, 3503–3514 (2008).

    Article 

    Google Scholar 

  • Bridgham, S. D. et al. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob. Change Biol. 19, 1325–1346 (2013).

    Article 

    Google Scholar 

  • Schuldt, R. et al. Modelling Holocene carbon accumulation and methane emissions of boreal wetlands—an Earth system model approach. Biogeosciences 10, 1659–1674 (2012).

    Article 

    Google Scholar 

  • McNicol, G. et al. Effects of seasonality, transport pathway, and spatial structure on greenhouse gas fluxes in a restored wetland. Glob. Change Biol. 23, 2768–2782 (2017).

    Article 

    Google Scholar 

  • Yu, K. et al. Redox window with minimum global warming potential contribution from rice soils. Soil Sci. Soc. Am. J. 68, 2086–2091 (2004).

    Article 

    Google Scholar 

  • Huang, Y. et al. Tradeoff of CO2 and CH4 emissions from global peatlands under water-table drawdown. Nat. Clim. Change 11, 618–622 (2021).

    Article 

    Google Scholar 

  • Ojanen, P. & Minkkinen, K. Rewetting offers rapid climate benefits for tropical and agricultural peatlands but not for forestry‐drained peatlands. Glob. Biogeochem. Cycles 34, e2019GB006503 (2020).

    Article 

    Google Scholar 

  • Evans, C. D. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021).

    Google Scholar 

  • Strack, M., Keith, A. M. & Xu, B. Growing season carbon dioxide and methane exchange at a restored peatland on the Western Boreal Plain. Ecol. Eng. 64, 231–239 (2014).

    Article 

    Google Scholar 

  • Karki, S. et al. Carbon balance of rewetted and drained peat soils used for biomass production: a mesocosm study. Glob. Change Biol. Bioenergy 8, 969–980 (2016).

    Article 

    Google Scholar 

  • Whiting, G. J. & Chanton, J. P. Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus B 53, 521–528 (2001).

    Google Scholar 

  • Moore, T. R. et al. A multi-year record of methane flux at the Mer Bleue Bog, Southern Canada. Ecosystems 14, 646–657 (2011).

    Article 

    Google Scholar 

  • Zhu, X. et al. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. Proc. Natl Acad. Sci. USA 110, 6328–6333 (2013).

    Article 

    Google Scholar 

  • Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 171–184 (2007).

    Article 

    Google Scholar 

  • Holgerson, M. A. & Raymond, P. A. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat. Geosci. 9, 222–226 (2016).

    Article 

    Google Scholar 

  • Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    Article 

    Google Scholar 

  • Rosentreter, J. A. et al. Half of global methane emissions come from highly variable aquatic ecosystem sources. Nat. Geosci. 14, 225–230 (2021).

    Article 

    Google Scholar 

  • Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004).

    Article 

    Google Scholar 

  • Schuur, E. A. et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, 556–559 (2009).

    Article 

    Google Scholar 

  • Delgado-Baquerizo, M. et al. Climate legacies drive global soil carbon stocks in terrestrial ecosystems. Sci. Adv. 3, e1602008 (2017).

    Article 

    Google Scholar 

  • Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Article 

    Google Scholar 

  • Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).

    Article 

    Google Scholar 

  • Baird, A. J. et al. Validity of managing peatlands with fire. Nat. Geosci. 12, 884–885 (2019).

    Article 

    Google Scholar 

  • Ritchie, H., Roser, M. & Rosado, P. CO2 and GHG Emissions: Atmospheric Concentrations (Our World in Data, 2020); https://ourworldindata.org/atmospheric-concentrations#citation

  • Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).

    Article 

    Google Scholar 

  • Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).

    Article 

    Google Scholar 

  • Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).

    Article 

    Google Scholar 

  • Jaenicke, J. et al. Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions. Mitig. Adapt. Strateg. Glob. Change 15, 223–239 (2010).

    Article 

    Google Scholar 

  • Wohl, E. Landscape-scale carbon storage associated with beaver dams. Geophys. Res. Lett. 40, 3631–3636 (2013).

    Article 

    Google Scholar 

  • Law, A. et al. Using ecosystem engineers as tools in habitat restoration and rewilding: beaver and wetlands. Sci. Total Environ. 605–606, 1021–1030 (2017).

    Article 

    Google Scholar 

  • Brown, L. E. et al. Macroinvertebrate community assembly in pools created during peatland restoration. Sci. Total Environ. 569, 361–372 (2016).

    Article 

    Google Scholar 

  • Finlayson, C. M. & Rea, N. Reasons for the loss and degradation of Australian wetlands. Wetl. Ecol. Manage. 7, 1–11 (1999).

    Article 

    Google Scholar 

  • Liu, J. et al. Water conservancy projects in China: achievements, challenges and way forward. Glob. Environ. Change 23, 633–643 (2013).

    Article 

    Google Scholar 

  • Rogelj, J. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) Ch. 2 (IPCC, WMO, 2018).

  • Svensson, B. H. & Rosswall, T. In situ methane production from acid peat in plant communities with different moisture regimes in a subarctic mire. Oikos 43, 341–350 (1984).

    Article 

    Google Scholar 

  • Waddington, J. M. & Roulet, N. T. Atmosphere–wetland carbon exchanges: scale dependency of CO2 and CH4 exchange on the developmental topography of a peatland. Glob. Biogeochem. Cycles 10, 233–245 (1996).

    Article 

    Google Scholar 

  • Kling, G. W. et al. The flux of CO2 and CH4 from lakes and rivers in Arctic Alaska. Hydrobiologia 240, 23–36 (1992).

    Article 

    Google Scholar 

  • Humphreys, E. R. et al. Two bogs in the Canadian Hudson Bay lowlands and a temperate bog reveal similar annual net ecosystem exchange of CO2. Arct. Antarct. Alp. Res. 46, 103–113 (2014).

    Article 

    Google Scholar 

  • Caffrey, J. M. Factors controlling net ecosystem metabolism in US estuaries. Estuaries 27, 90–101 (2004).

    Article 

    Google Scholar 

  • Roberts, B. J. et al. Multiple scales of temporal variability in ecosystem metabolism rates: results from 2 years of continuous monitoring in a forested headwater stream. Ecosystems 10, 588–606 (2007).

    Article 

    Google Scholar 

  • Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T.F. et al.) 710–714 (Cambridge Univ. Press, 2013).

  • Glenn, A. J. et al. Comparison of net ecosystem CO2 exchange in two peatlands in western Canada with contrasting dominant vegetation, Sphagnum and Carex. Agric. For. Meteorol. 140, 115–135 (2006).

    Article 

    Google Scholar 

  • Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 (2010).

    Article 

    Google Scholar 

  • Zhao, J. et al. Intensified inundation shifts a freshwater wetland from a CO2 sink to a source. Glob. Change Biol. 25, 3319–3333 (2019).

    Article 

    Google Scholar 

  • Peichl, M. et al. A 12-year record reveals pre-growing season temperature and water table level threshold effects on the net carbon dioxide exchange in a boreal fen. Environ. Res. Lett. 9, 55006 (2014).

    Article 

    Google Scholar 

  • Peng, Z. & Peng, G. Suitability mapping of global wetland areas and validation with remotely sensed data. Sci. China Earth Sci. 57, 2883–2892 (2014).

    Google Scholar 

  • Zhang, B. et al. Methane emissions from global wetlands: an assessment of the uncertainty associated with various wetland extent data sets. Atmos. Environ. 165, 310–321 (2017).

    Article 

    Google Scholar 

  • Gumbricht, T. et al. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob. Change Biol. 23, 3581–3599 (2017).

    Article 

    Google Scholar 

  • ERA5 Monthly Averaged Data on Pressure Levels from 1979 to Present (ECMWF, 2020); https://doi.org/10.24381/cds.6860a573

  • FAOSTAT Emissions Database (FAO, 2020); http://www.fao.org/faostat/en/#data/GT

  • Qiu, C. et al. Large historical carbon emissions from cultivated northern peatlands. Sci. Adv. 7, eabf1332 (2021).

    Article 

    Google Scholar 

  • Frolking, S., Roulet, N. & Fuglestvedt, J. How northern peatlands influence the Earth’s radiative budget: sustained methane emission versus sustained carbon sequestration. J. Geophys. Res. Biogeosci. 111, G01008 (2006).

    Google Scholar 

  • Neubauer, S. C. & Megonigal, J. P. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18, 1000–1013 (2015).

    Article 

    Google Scholar 

  • Matthews, E. & Fung, I. Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Glob. Biogeochem. Cycles 1, 61–86 (1987).

    Article 

    Google Scholar 

  • Melton, J. R. et al. Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences 10, 753–788 (2013).

    Article 

    Google Scholar 

  • Papa, F. et al. Interannual variability of surface water extent at the global scale, 1993–2004. J. Geophys. Res. Atmos. 115, D12111 (2010).

    Article 

    Google Scholar 

  • Junk, W. J. et al. Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquat. Sci. 75, 151–167 (2013).

    Article 

    Google Scholar 

  • Schroeder, R. et al. Development and evaluation of a multi-year fractional surface water data set derived from active/passive microwave remote sensing data. Remote Sens. 7, 16688–16732 (2015).

    Article 

    Google Scholar 

  • Vanessa, R. et al. A global assessment of inland wetland conservation status. Bioscience 6, 523–533 (2017).

    Google Scholar 

  • Davidson, N. et al. Global extent and distribution of wetlands: trends and issues. Mar. Freshw. Res. 69, 620–627 (2018).

    Article 

    Google Scholar 

  • ArcWorld 1:3 M. Continental Coverage (ESRI, 1992); http://www.oceansatlas.org/subtopic/en/c/593/

  • Digital Chart of the World 1:1 M (ESRI, 1993); https://www.ngdc.noaa.gov/mgg/topo/report/s5/s5Avii.html

  • Global Wetlands (UNEP-WCMC, 1993); https://www.arcgis.com/home/item.html?id=105a402642e146eaa665315279a322d1

  • Moreno-Mateos, D. et al. Structural and functional loss in restored wetland ecosystems. PLoS Biol. 10, e1001247 (2012).

    Article 

    Google Scholar 

  • Ramsar COP12 DOC.8 Report of the Secretary General to COP12 on the Implementation of the Convention (Ramsar Convention Secretariat, 2015).

  • Page, S. E. et al. Peatlands and global change: response and resilience. Annu. Rev. Environ. Resour. 41, 35–57 (2016).

    Article 

    Google Scholar 

  • Swindles, G. T. et al. Widespread drying of European peatlands in recent centuries. Nat. Geosci. 12, 922–928 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    The response of wheat and its microbiome to contemporary and historical water stress in a field experiment

    New hardware offers faster computation for artificial intelligence, with much less energy