Vázquez, D. P., Gianoli, E., Morris, W. F. & Bozinovic, F. Ecological and evolutionary impacts of changing climatic variability. Biol. Rev. 92, 22–42. https://doi.org/10.1111/brv.12216 (2017).
Google Scholar
Marshall, K. E. & Sinclair, B. J. The impacts of repeated cold exposure on insects. J. Exp. Biol. 215, 1607–1613. https://doi.org/10.1242/jeb.059956 (2012).
Google Scholar
Bale, J. & Hayward, S. Insect overwintering in a changing climate. J. Exp. Biol. 213, 980–994 (2010).
Google Scholar
Kingsolver, J. G. Feeding, growth, and the thermal environment of cabbage white caterpillars, Pieris rapae L. Physiol. Biochem. Zool. 73, 621–628 (2000).
Google Scholar
Stange, E. E. & Ayres, M. P. Climate change impacts: Insects (JohnWiley & Sons, 2010).
Chapman, A. D. Numbers of Living Species in Australia and the World: Report for the Department of the Environment and Heritage Canberra, Australia (Department of the Environment and Heritage, 2006).
Colinet, H., Sinclair, B. J., Vernon, P. & Renault, D. Insects in fluctuating thermal environments. Annu. Rev. Entomol. 60, 123–140. https://doi.org/10.1146/annurev-ento-010814-021017 (2015).
Google Scholar
Hickling, R., Roy, D. B., Hill, J. K. & Thomas, C. D. A northward shift of range margins in British Odonata. Glob. Change Biol. 11, 502–506. https://doi.org/10.1111/j.1365-2486.2005.00904.x (2005).
Google Scholar
Rumpf, S. B., Hülber, K., Zimmermann, N. E. & Dullinger, S. Elevational rear edges shifted at least as much as leading edges over the last century. Glob. Ecol. Biogeogr. 28, 533–543. https://doi.org/10.1111/geb.12865 (2019).
Google Scholar
Halsch, C. A. et al. Insects and recent climate change. Proc. Natl. Acad. Sci. 118, e2002543117. https://doi.org/10.1073/pnas.2002543117 (2021).
Google Scholar
McCain, C. M. & Garfinkel, C. F. Climate change and elevational range shifts in insects. Curr. Opin. Insect Sci. 47, 111–118. https://doi.org/10.1016/j.cois.2021.06.003 (2021).
Google Scholar
Angilletta, M. J. Jr. & Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, 2009).
Google Scholar
Angilletta, M. J. & Dunham, A. E. The temperature-size rule in ectotherms: Simple evolutionary explanations may not be general. Am. Nat. 162, 332–342. https://doi.org/10.1086/377187 (2003).
Google Scholar
Jensen, J. L. W. V. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30, 175–193 (1906).
Google Scholar
Ruel, J. J. & Ayres, M. P. Jensen’s inequality predicts effects of environmental variation. Trends Ecol. Evol. 14, 361–366 (1999).
Google Scholar
Kingsolver, J. G. & Woods, H. A. Thermal sensitivity of growth and feeding in Manduca sexta Caterpillars. Physiol. Zool. 70, 631–638. https://doi.org/10.1086/515872 (1997).
Google Scholar
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).
Google Scholar
Bale, J. S. et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).
Google Scholar
Robinet, C. & Roques, A. Direct impacts of recent climate warming on insect populations. Integr. Zool. 5, 132–142 (2010).
Google Scholar
García-Robledo, C., Kuprewicz, E. K., Staines, C. L., Erwin, T. L. & Kress, W. J. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc. Natl. Acad. Sci. 113, 680–685. https://doi.org/10.1073/pnas.1507681113 (2016).
Google Scholar
Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B Biol. Sci. 281, 20132612 (2014).
Google Scholar
Sandehson, D. E. The relation of temperature to the growth of insects. J. Econ. Entomol. 3, 113–140 (1910).
Google Scholar
Cook, W. C. Some Effects of Alternating Temperatures on the Growth and Metabolism of Cutworm Larvae (Oxford University Press, 1927).
Kingsolver, J. G., Ragland, G. J. & Diamond, S. E. Evolution in a constant environment: Thermal fluctuations and thermal sensitivity of laboratory and field populations of Manduca sexta. Evolution 63, 537–541. https://doi.org/10.1111/j.1558-5646.2008.00568.x (2009).
Google Scholar
Eldridge, W. H., Sweeney, B. W. & Law, J. M. Fish growth, physiological stress, and tissue condition in response to rate of temperature change during cool or warm diel thermal cycles. Can. J. Fish. Aquat. Sci. 72, 1527–1537 (2015).
Google Scholar
Bernhardt, J. R., Sunday, J. M., Thompson, P. L. & O’Connor, M. I. Nonlinear averaging of thermal experience predicts population growth rates in a thermally variable environment. Proc. R. Soc. B Biol. Sci. 285, 20181076. https://doi.org/10.1098/rspb.2018.1076 (2018).
Google Scholar
Morissette, J., Swart, S., Maccormack, T. J., Currie, S. & Morash, A. J. Thermal variation near the thermal optimum does not affect the growth, metabolism or swimming performance in wild Atlantic salmon Salmo salar. J. Fish Biol. 98, 1585–1589. https://doi.org/10.1111/jfb.14348 (2021).
Google Scholar
Bozinovic, F. et al. The mean and variance of environmental temperature interact to determine physiological tolerance and fitness. Physiol. Biochem. Zool. 84, 543–552 (2011).
Google Scholar
Boggs, C. L. The fingerprints of global climate change on insect populations. Curr. Opin. Insect Sci. 17, 69–73. https://doi.org/10.1016/j.cois.2016.07.004 (2016).
Google Scholar
Lemoine, N. P., Drews, W. A., Burkepile, D. E. & Parker, J. D. Increased temperature alters feeding behavior of a generalist herbivore. Oikos 122, 1669–1678. https://doi.org/10.1111/j.1600-0706.2013.00457.x (2013).
Google Scholar
Vangansbeke, D. et al. Prey consumption by phytoseiid spider mite predators as affected by diurnal temperature variations. Biocontrol 60, 595–603 (2015).
Google Scholar
Davies, C., Coetzee, M. & Lyons, C. L. Effect of stable and fluctuating temperatures on the life history traits of Anopheles arabiensis and An. quadriannulatus under conditions of inter-and intra-specific competition. Parasit. Vectors 9, 1–9 (2016).
Google Scholar
Delava, E., Fleury, F. & Gibert, P. Effects of daily fluctuating temperatures on the Drosophila-Leptopilina boulardi parasitoid association. J. Therm. Biol. 60, 95–102 (2016).
Google Scholar
Amarasekare, P. & Coutinho, R. M. Effects of temperature on intraspecific competition in ectotherms. Am. Nat. 184, E50–E65. https://doi.org/10.1086/677386 (2014).
Google Scholar
Jiang, L. & Morin, P. J. Temperature-dependent interactions explain unexpected responses to environmental warming in communities of competitors. J. Anim. Ecol. 73, 569–576 (2004).
Google Scholar
Novich, R. A., Erickson, E. K., Kalinoski, R. M. & DeLong, J. P. The temperature independence of interaction strength in a sit-and-wait predator. Ecosphere 5, 1–9 (2014).
Google Scholar
Fox, L. R. Cannibalism in natural populations. Annu. Rev. Ecol. Syst. 6, 87–106 (1975).
Google Scholar
Polis, G. A. The evolution and dynamics of intraspecific predation. Annu. Rev. Ecol. Syst. 12, 225–251 (1981).
Google Scholar
Nishimura, K. & Isoda, Y. Evolution of cannibalism: Referring to costs of cannibalism. J. Theor. Biol. 226, 293–302. https://doi.org/10.1016/j.jtbi.2003.09.007 (2004).
Google Scholar
Crumrine, P. W. Body size, temperature, and seasonal differences in size structure influence the occurrence of cannibalism in larvae of the migratory dragonfly, Anax junius. Aquat. Ecol. 44, 761–770 (2010).
Google Scholar
Reglero, P., Urtizberea, A., Torres, A. P., Alemany, F. & Fiksen, Ø. Cannibalism among size classes of larvae may be a substantial mortality component in tuna. Mar. Ecol. Prog. Ser. 433, 205–219 (2011).
Google Scholar
Nilsson-Örtman, V., Stoks, R. & Johansson, F. Competitive interactions modify the temperature dependence of damselfly growth rates. Ecology 95, 1394–1406. https://doi.org/10.1890/13-0875.1 (2014).
Google Scholar
Pritchard, G. & Leggott, M. Temperature, incubation rates and the origins of dragonflies. Adv. Odonatol. 3, 121–126 (1987).
Hassall, C. & Thompson, D. J. The effects of environmental warming on Odonata: A review. Int. J. Odonatol. 11, 131–153 (2008).
Google Scholar
Johansson, F. & Crowley, P. H. Larval cannibalism and population dynamics of dragonflies. In Aquatic Insects: Challenges to Populations 36–54 (CABI, 2008).
Rudolf, V. H. W. & Rasmussen, N. L. Ontogenetic functional diversity: Size structure of a keystone predator drives functioning of a complex ecosystem. Ecology 94, 1046–1056 (2013).
Google Scholar
Hyeun-Ji, L. & Johansson, F. Compensating for a bad start: Compensatory growth across life stages in an organism with a complex life cycle. Can. J. Zool. 94, 41–47 (2016).
Google Scholar
Sokolovska, N., Rowe, L. & Johansson, F. Fitness and body size in mature odonates. Ecol. Entomol. 25, 239–248. https://doi.org/10.1046/j.1365-2311.2000.00251.x (2000).
Google Scholar
Karl, T. R. Modern global climate change. Science 302, 1719–1723. https://doi.org/10.1126/science.1090228 (2003).
Google Scholar
Meehl, G. A. et al. Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).
Meehl, G. A. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997. https://doi.org/10.1126/science.1098704 (2004).
Google Scholar
Khelifa, R. Spatiotemporal Pattern of Phenology Across Geographic Gradients in Insects, in Chapter 1 (Geographic Gradients in Climate Change Response Explained by Non-linear Thermal-Performance Curves) (University of Zurich, 2017).
Boudot, J. P. & Kalkman, V. Atlas of the European Dragonflies and Damselflies (KNNV Publishing, 2015).
Norling, U. Growth, winter preparations and timing of emergence in temperate zone Odonata: Control by a succession of larval response patterns. Int. J. Odonatol. 24, 1–36 (2021).
Google Scholar
Sniegula, S. & Johansson, F. Photoperiod affects compensating developmental rate across latitudes in the damselfly Lestes sponsa. Ecol. Entomol. 35, 149–157. https://doi.org/10.1111/j.1365-2311.2009.01164.x (2010).
Google Scholar
Sniegula, S., Golab, M. J. & Johansson, F. Size-mediated priority and temperature effects on intra-cohort competition and cannibalism in a damselfly. J. Anim. Ecol. 88, 637–648. https://doi.org/10.1111/1365-2656.12947 (2019).
Google Scholar
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. https://doi.org/10.1038/nmeth.2089 (2012).
Google Scholar
Benke, A. C. A method for comparing individual growth rates of aquatic insects with special reference to the Odonata. Ecology 51, 328–331 (1970).
Google Scholar
Nilsson-Örtman, V., Stoks, R., De Block, M. & Johansson, F. Generalists and specialists along a latitudinal transect: Patterns of thermal adaptation in six species of damselflies. Ecology 93, 1340–1352. https://doi.org/10.1890/11-1910.1 (2012).
Google Scholar
Eklund, A. et al. Sveriges Framtida Klimat: Underlag Till Dricksvattenutredningen (SMHI, 2015).
McPeek, M. A. Determination of species composition in the Enallagma damselfly assemblages of permanent lakes. Ecology 71, 83–98. https://doi.org/10.2307/1940249 (1990).
Google Scholar
Kirillin, G. et al. FLake-global: Online lake model with worldwide coverage. Environ. Model. Softw. 26, 683–684. https://doi.org/10.1016/j.envsoft.2010.12.004 (2011).
Google Scholar
SMHI. Advanced Climate Change Scenario Service. https://www.smhi.se.
R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
Suhling, F., Suhling, I. & Richter, O. Temperature response of growth of larval dragonflies–An overview. Int. J. Odonatol. 18, 15–30 (2015).
Google Scholar
Padfield, D., O’Sullivan, H. & Pawar, S. rTPC and nls.multstart: A new pipeline to fit thermal performance curves in R. Methods Ecol. Evol. 1, 1. https://doi.org/10.1111/2041-210X.13585 (2021).
Google Scholar
Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932).
Google Scholar
Hemmingsen, A. Reports of the Steno Memorial Hospital and Nordisk Insulin Laboratorium. Energy Metab. Relat. Body Size Respir. Surf. Evol. 9, 6–110 (1960).
Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. 108, 10591–10596 (2011).
Google Scholar
Logan, J. D., Wolesensky, W. & Joern, A. Temperature-dependent phenology and predation in arthropod systems. Ecol. Model. 196, 471–482. https://doi.org/10.1016/j.ecolmodel.2006.02.034 (2006).
Google Scholar
Pink, M. & Abrahams, M. V. Temperature and its impact on predation risk within aquatic ecosystems. Can. J. Fish. Aquat. Sci. 73, 869–876. https://doi.org/10.1139/cjfas-2015-0302 (2016).
Google Scholar
DeAngelis, D., Cox, D. & Coutant, C. Cannibalism and size dispersal in young-of-the-year largemouth bass: Experiment and model. Ecol. Model. 8, 133–148 (1980).
Google Scholar
Fagan, W. F. & Odell, G. M. Size-dependent cannibalism in praying mantids: Using biomass flux to model size-structured populations. Am. Nat. 147, 230–268 (1996).
Google Scholar
Dong, Q. & Deangelis, D. L. Consequences of cannibalism and competition for food in a smallmouth bass population: An individual-based modeling study. Trans. Am. Fish. Soc. 127, 174–191 (1998).
Google Scholar
Verheyen, J. & Stoks, R. Temperature variation makes an ectotherm more sensitive to global warming unless thermal evolution occurs. J. Anim. Ecol. 88, 624–636. https://doi.org/10.1111/1365-2656.12946 (2019).
Google Scholar
Starr, S. M. & McIntyre, N. E. Effects of water temperature under projected climate change on the development and survival of Enallagma civile (Odonata: Coenagrionidae). Environ. Entomol. 49, 230–237. https://doi.org/10.1093/ee/nvz138 (2020).
Google Scholar
Culler, L. E., McPeek, M. A. & Ayres, M. P. Predation risk shapes thermal physiology of a predaceous damselfly. Oecologia 176, 653–660. https://doi.org/10.1007/s00442-014-3058-8 (2014).
Google Scholar
Dokulil, M. T. et al. Increasing maximum lake surface temperature under climate change. Clim. Change https://doi.org/10.1007/s10584-021-03085-1 (2021).
Google Scholar
Merritt, R. W. & Cummins, K. W. An Introduction to the Aquatic Insects of North America 2nd edn. (Kendall/Hunt Publishing Company, 1984).
Verdonschot, R. & Peeters, E. T. Preference of larvae of Enallagma cyathigerum (Odonata: Coenagrionidae) for habitats of varying structural complexity. Eur. J. Entomol. 109, 229–234 (2012).
Google Scholar
McCarty, J. P., Wolfenbarger, L. L. & Wilson, J. A. eLS 1–13 (Wiley, 2017).
Google Scholar
Holzmann, K. L. Challenges in a Changing Climate: The Effect of Temperature Variation on Growth and Competition in Damselflies Independent thesis Advanced level (degree of Master (Two Years) thesis, Uppsala University. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-467582 (2022).
Source: Ecology - nature.com