in

Biogeographic implication of temperature-induced plant cell wall lignification

  • Körner, C. The cold range limit of trees. Trends Ecol. Evo. 36, 979–989 (2021).

    Article 

    Google Scholar 

  • Körner, C. Alpine Treelines (Springer, 2012).

  • Miehe, G., Miehe, S., Vogel, J., Co, S. & Duo, L. Highest treeline in the northern hemisphere found in southern Tibet. Mt. Res. Dev. 27, 169–173 (2007).

    Article 

    Google Scholar 

  • Hoch, G. & Körner, C. Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline. Funct. Ecol. 19, 941–951 (2005).

    Article 

    Google Scholar 

  • von Humboldt, A. & Bonpland, A. Ideen zu einer Geographie der Pflanzen nebst einem Naturgemälde der Tropenländer: auf Beobachtungen und Messungen gegründet, welche vom 10ten Grade nördlicher bis zum 10ten Grade südlicher Breite, in den Jahren 1799, 1800, 1801, 1802 und 1803 angestellt worden sind. Tübingen, Bey F.G. Cotta (1807).

  • Körner, C. Climatic treelines: conventions, global patterns, causes. Erdkunde 61, 315–324 (2007).

    Article 

    Google Scholar 

  • Piermattei, A., Crivellaro, A., Carrer, M. & Urbinati, C. The “blue ring”: anatomy and formation hypothesis of a new tree-ring anomaly in conifers. Trees Struct. Funct. 29, 613–620 (2015).

    CAS 
    Article 

    Google Scholar 

  • Körner, C. et al. Life at 0 °C: the biology of the alpine snowbed plant Soldanella pulsatilla. Alp. Bot. 129, 63–80 (2019).

    Article 

    Google Scholar 

  • Crivellaro, A. & Büntgen, U. New evidence of thermally-constraint plant cell wall lignification. Trends Plant Sci. 24, 322–324 (2020).

    Article 
    CAS 

    Google Scholar 

  • Büntgen, U. et al. Temperature-induced recruitment pulses of Arctic dwarf shrub communities. J. Ecol. 103, 489–501 (2015).

    Article 

    Google Scholar 

  • Dolezal, J. et al. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Sci. Rep. 6, 24881 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ryan, M. G. & Yoder, B. J. Hydraulic limits to tree height and tree growth. Biosci 47, 235–242 (1997).

    Article 

    Google Scholar 

  • Koch, G. W., Sillett, S. C., Jennings, G. M. & Davis, S. D. The limits to tree height. Nature 428, 851–854 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems (Springer, 2003).

  • Scherrer, D. & Körner, C. Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob. Change Biol. 16, 2602–2613 (2010).

    Google Scholar 

  • Begum, S., Nakaba, S., Yamagishi, Y., Oribe, Y. & Funada, R. Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. Physiol. Planta 147, 46–54 (2013).

    CAS 
    Article 

    Google Scholar 

  • Plomion, C., Leprovost, G. & Stokes, A. Wood formation in trees. Plant Physiol. 127, 1513–1523 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rossi, S., Deslauriers, A., Anfodillo, T. & Carraro, V. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152, 1–12 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Moura, J. C. M. S., Bonine, C. A. V., Viana, J. O. F., Dornelas, M. C. & Mazzafera, P. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J. Integr. Plant Biol. 52, 360–376 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Weng, J. K. & Chapple, C. The origin and evolution of lignin biosynthesis. N. Phytol. 187, 273–285 (2010).

    CAS 
    Article 

    Google Scholar 

  • Niklas, K. J., Cobb, E. D. & Matas, A. J. The evolution of hydrophobic cell wall biopolymers: from algae to angiosperms. J. Exp. 68, 5261–5269 (2017).

    CAS 

    Google Scholar 

  • Popper, Z. A. et al. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu. Rev. Plant Biol. 62, 567–590 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Piquemal, J. et al. Down regulation of cinnamoyl CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J. 13, 71–83 (1998).

    CAS 
    Article 

    Google Scholar 

  • Renault, H., Werck-Reichhart, D. & Weng, J.-K. Harnessing lignin evolution for biotechnological applications. Curr. Opin. Biotechnol. 56, 105–111 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schenk, H. J., Espino, S., Rich-Cavazos, S. M. & Jansen, S. From the sap’s perspective: The nature of vessel surfaces in angiosperm xylem. Am. J. Bot. 105, 172–185 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Polo, C. C. et al. Correlations between lignin content and structural robustness in plants revealed by X-ray ptychography. Sci. Rep. 10, 6023 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Meents, M. J., Watanabe, Y. & Samuels, A. L. The cell biology of secondary cell wall biosynthesis. Ann. Bot. 121, 1107–1125 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Campbell, M. M. & Sederoff, R. R. Variation in lignin content and composition (mechanisms of control and implications for the genetic improvement of plants). Plant Physiol. 110, 3–13 (1996).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schweingruber, F. H. & Büntgen, U. What is ‘wood’ – An anatomical re-definition. Dendrochronologia 31, 187–191 (2013).

    Article 

    Google Scholar 

  • Ellenberg, H. & Mueller-Dombois, D. A key to Raunkiaer plant life forms with revised subdivisions. Ber. Geobot. Inst. ETH Z.ürich. 37, 56–73 (1967).

    Google Scholar 

  • Kim, W. J., Campbell, A. G. & Koch, P. Chemical variation in Lodgepole pine with latitude, elevation, and diameter class. Prod. J. 39, 7–12 (1989).

    CAS 

    Google Scholar 

  • Gindl, W., Grabner, M. & Wimmer, R. The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees, Struct. Funct. 14, 409–414 (2000).

    Article 

    Google Scholar 

  • Schenker, G., Lens, A., Körner, C. & Hoch, G. Physiological minimum temperatures for root growth in seven common European broad-leaved tree species. Tree Physiol. 34, 302–313 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Nagelmüller, S., Hiltbrunner, E. & Körner, C. Low temperature limits for root growth in alpine species are set by cell differentiation. AoB Plants 9, plx054 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ji, H. et al. The Arabidopsis RCC1 family protein TCF1 regulates freezing tolerance and cold acclimation through modulating lignin biosynthesis. PLoS Gen. 11, e1005471 (2015).

    Article 
    CAS 

    Google Scholar 

  • Büntgen, U. Re-thinking the boundaries of dendrochronology. Dendrochronologia 53, 1–4 (2019).

    Article 

    Google Scholar 

  • Piermattei, A. et al. A millennium-long ‘Blue-Ring’ chronology from the Spanish Pyrenees reveals sever ephemeral summer cooling after volcanic eruptions. Environ. Res. Lett. 15, 124016 (2020).

    Article 

    Google Scholar 

  • Montwé, D., Isaac-Rentin, M., Hamman, A. & Spiecker, H. Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration. Nat. Comm. 9, 1574 (2018).

    Article 
    CAS 

    Google Scholar 

  • Barros, J., Serk, H., Granlund, I. & Pesquet, E. The cell biology of lignification in higher plants. Ann. Bot. 115, 1053–1074 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hao, Z. & Mohnen, D. A review of xylan and lignin biosynthesis: Foundation for studying Arabidopsis irregular xylem mutants with pleiotropic phenotypes. Cri. Rev. Biochem. Mol. Biol. 49, 212–241 (2014).

    CAS 
    Article 

    Google Scholar 

  • Liu, Q., Luo, L. & Zheng, L. Lignins: biosynthesis and biological functions in plants. Int. J. Mol. Sci. 19, 335 (2018).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Kumar, M., Campbell, L. & Turner, S. Secondary cell walls: biosynthesis and manipulation. J. Exp. Bot. 67, 515–531 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mellerowicz, E. J., Baucher, M., Sundberg, B. & Boerjan, W. Unravelling cell wall formation in the woody dicot stem. Plant Mol. Biol. 47, 239–274 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Petit, G., Anfodillo, T., Carraro, V., Grani, F. & Carrer, M. Hydraulic constraints limit height growth in trees at high altitude. N. Phytol. 189, 241–252 (2010).

    Article 

    Google Scholar 

  • Li, L. et al. Combinatorial modification of multiple lignin traits in trees through multigene co-transformation. Proc. Natl Acad. Sci. USA 100, 4939–4944 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Baldacci-Cresp, F. et al. A rapid and quantitative safranin-based fluorescent microscopy method to evaluate cell wall lignification. Plant J. 102, 1074–1089 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Körner, C. A re-assessment of high elevation treeline positions and their explanation. Oecologia 115, 445–459 (1998).

    PubMed 
    Article 

    Google Scholar 

  • Landolt, E. et al. Flora indicativa: Okologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen (Haupt, 2010).

  • Büntgen, U., Psomas, A. & Schweingruber, F. H. Introducing wood anatomical and dendrochronological aspects of herbaceous plants: applications of the Xylem Database to vegetation science. J. Veg. Sci. 25, 967–977 (2014).

    Article 

    Google Scholar 

  • Körner, C. Coldest places on earth with angiosperm plant life. Alp. Bot. 121, 11–22 (2011).

    Article 

    Google Scholar 

  • GBIF.org. GBIF Occurrence Download. https://doi.org/10.15468/dl.ms4hjt (2018).

  • Chamberlain, S., Ram, K. & Hart, T. Spocc: Interface to Specie Occurrence Data Sources, R package v.0.9.0. http://CRAN.R-project.org/package=spocc (2018).

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high-resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar 

  • Hijmans, R. J. Raster: geographic data analysis and modelling, R package v.2.2-12. http://CRAN.R-project.org/package=raster (2014).

  • Gärtner, H. et al. A technical perspective in modern tree-ring research – How to overcome dendroecological and wood anatomical challenges. J. Vis. Exp. 97, e52337 (2015).

    Google Scholar 

  • Gärtner, H. & Schweingruber, F. H. Microscopic Preparation Techniques for Plant Stem Analysis (Verlag Kessel, 2013).

  • Ghislan, B., Engel, J. & Clair, B. Diversity of anatomical structure of tension wood among 242 tropical tree species. IAWA J. 40, 1–20 (2019).

    Article 

    Google Scholar 

  • Schweingruber, F. H., Börner, A. & Schulze, E. D. Atlas of Stem Anatomy in Herbs, Shrubs and Trees Vol. 1 (Springer, 2011).

  • Schweingruber, F. H., Börner, A. & Schulze, E. D. Atlas of Stem Anatomy in Herbs, Shrubs and Trees Vol. 2 (Springer, 2013).

  • Dolezal, J., Dvorsky, M., Börner, A., Wild, J. & Schweingruber, F. H. Anatomy, Age and Ecology of High Mountain Plants in Ladakh, the Western Himalaya (Springer International Publishing, 2018).

  • Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to imageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ter Braak, C. J. F. & Šmilauer, P. Canoco Reference Manual and User’s Guide: Software 559 for Ordination, Version 5.0 (Cambridge Univ. Press, 2012).

  • Šmilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data Using Canoco 5 (Cambridge Univ. Press, 2014).


  • Source: Ecology - nature.com

    New hardware offers faster computation for artificial intelligence, with much less energy

    The gut microbiome variability of a butterflyfish increases on severely degraded Caribbean reefs