in

Stylasterid corals build aragonite skeletons in undersaturated water despite low pH at the site of calcification

  • Stocker, T. F. et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds T.F. Stocker et al.) Ch. TS, 33–115 (Cambridge University Press, 2013).

  • Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: The other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Albright, R. et al. Carbon dioxide addition to coral reef waters suppresses net community calcification. Nature 555, 516–519 (2018).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Chen, C.-T.A. et al. Deep oceans may acidify faster than anticipated due to global warming. Nat. Clim. Chang. 7, 890–894 (2017).

    ADS 
    Article 

    Google Scholar 

  • Guinotte, J. M. et al. Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals?. Front. Ecol. Environ. 4, 141–146 (2006).

    Article 

    Google Scholar 

  • Figuerola, B. et al. A review and meta-analysis of potential impacts of ocean acidification on marine calcifiers from the southern ocean. Front. Mar. Sci. 8, 584445 (2021).

    Article 

    Google Scholar 

  • Ries, J. B. Skeletal mineralogy in a high-CO2 world. J. Exp. Mar. Biol. Ecol. 403, 54–64 (2011).

    Article 

    Google Scholar 

  • Blackmon, P. D. & Todd, R. Mineralogy of some foraminifera as related to their classification and ecology. J. Paleontol. 33, 1–15 (1959).

    Google Scholar 

  • Oliver, W. A. Jr. The relationship of the scleractinian corals to the rugose corals. Paleobiology 6, 146–160 (1980).

    Article 

    Google Scholar 

  • Sinclair, D. J. et al. Reproducibility of trace element profiles in a specimen of the deep-water bamboo coral Keratoisis sp. Geochim. Cosmochim. Acta 75, 5101–5121 (2011).

    ADS 
    Article 

    Google Scholar 

  • Liu, Y.-W., Sutton, J. N., Ries, J. B. & Eagle, R. A. Regulation of calcification site pH is a polyphyletic but not always governing response to ocean acidification. Sci. Adv. 6, eaax1314 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cornwall, C. E. et al. Understanding coralline algal responses to ocean acidification: Meta-analysis and synthesis. Glob. Change Biol. 28, 362–374 (2022).

    Article 

    Google Scholar 

  • Al-Horani, F. A., Al-Moghrabi, S. M. & de Beer, D. Microsensor study of photosynthesis and calcification in the scleractinian coral, Galaxea fascicularis: Active internal carbon cycle. J. Exp. Mar. Biol. Ecol. 288, 1–15 (2003).

    Article 

    Google Scholar 

  • Al-Horani, F. A., Al-Moghrabi, S. M. & de Beer, D. The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar. Biol. 142, 419–426 (2003).

    Article 

    Google Scholar 

  • Le Goff, C. et al. In vivo pH measurement at the site of calcification in an octocoral. Sci. Rep. 7, 11210 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McCulloch, M. et al. Resilience of cold-water scleractinian corals to ocean acidification: Boron isotopic systematics of pH and saturation state up-regulation. Geochim. Cosmochim. Acta 87, 21–34 (2012).

    ADS 
    Article 

    Google Scholar 

  • Gilbert, P. U. P. A. et al. Biomineralization: Integrating mechanism and evolutionary history. Sci. Adv. 8, eabl9653 (2022).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Donald, H. K., Ries, J. B., Stewart, J. A., Fowell, S. E. & Foster, G. L. Boron isotope sensitivity to seawater pH change in a species of Neogoniolithon coralline red alga. Geochim. Cosmochim. Acta 217, 240–253 (2017).

    ADS 
    Article 

    Google Scholar 

  • Krief, S. et al. Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochim. Cosmochim. Acta 74, 4988–5001 (2010).

    ADS 
    Article 

    Google Scholar 

  • Hönisch, B. et al. Assessing scleractinian corals as recorders for paleo-pH: Empirical calibration and vital effects. Geochim. Cosmochim. Acta 68, 3675–3685 (2004).

    ADS 
    Article 

    Google Scholar 

  • Anagnostou, E., Williams, B., Westfield, I., Foster, G. L. & Ries, J. B. Calibration of the pH-δ11B and temperature-Mg/Li proxies in the long-lived high-latitude crustose coralline red alga Clathromorphum compactum via controlled laboratory experiments. Geochim. Cosmochim. Acta 254, 142–155 (2019).

    ADS 
    Article 

    Google Scholar 

  • Cornwall, C. E., Comeau, S. & McCulloch, M. T. Coralline algae elevate pH at the site of calcification under ocean acidification. Glob. Change Biol. 23, 4245–4256 (2017).

    ADS 
    Article 

    Google Scholar 

  • Rosenthal, Y., Lear, C. H., Oppo, D. W. & Linsley, B. K. Temperature and carbonate ion effects on Mg/Ca and Sr/Ca ratios in benthic foraminifera: Aragonitic species Hoeglundina elegans. Paleoceanography 21, PA1007 (2006).

    ADS 
    Article 

    Google Scholar 

  • Gori, A. et al. Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification. PeerJ 4, e1606 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gagnon, A. C., Gothmann, A. M., Branson, O., Rae, J. W. B. & Stewart, J. A. Controls on boron isotopes in a cold-water coral and the cost of resilience to ocean acidification. Earth Planet. Sci. Lett. 554, 116662 (2021).

    Article 

    Google Scholar 

  • Cairns, S. D. Global diversity of the Stylasteridae (Cnidaria: Hydrozoa: Athecatae). PLoS ONE 6, e21670 (2011).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cairns, S. D. Deep-water corals: An overview with special reference to diversity and distribution of deep-water scleractinian corals. Bull. Mar. Sci. 81, 311–322 (2007).

    Google Scholar 

  • Samperiz, A. et al. Stylasterid corals: A new paleotemperature archive. Earth Planet. Sci. Lett. 545, 116407 (2020).

    Article 

    Google Scholar 

  • Cairns, S. D. & Macintyre, I. G. Phylogenetic implications of calcium carbonate mineralogy in the Stylasteridae (Cnidaria: Hydrozoa). Palaios, 96–107 (1992).

  • Anagnostou, E., Huang, K. F., You, C. F., Sikes, E. L. & Sherrell, R. M. Evaluation of boron isotope ratio as a pH proxy in the deep sea coral Desmophyllum dianthus: Evidence of physiological pH adjustment. Earth Planet. Sci. Lett. 349–350, 251–260 (2012).

    ADS 
    Article 

    Google Scholar 

  • Rae, J. W. B. et al. CO2 storage and release in the deep Southern Ocean on millennial to centennial timescales. Nature 562, 569–573 (2018).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Farmer, J. R., Hönisch, B., Robinson, L. F. & Hill, T. M. Effects of seawater-pH and biomineralization on the boron isotopic composition of deep-sea bamboo corals. Geochim. Cosmochim. Acta 155, 86–106 (2015).

    ADS 
    Article 

    Google Scholar 

  • Sutton, J. N. et al. δ11B as monitor of calcification site pH in divergent marine calcifying organisms. Biogeosciences 15, 1447–1467 (2018).

    ADS 
    Article 

    Google Scholar 

  • Heinemann, A. et al. Conditions of Mytilus edulis extracellular body fluids and shell composition in a pH-treatment experiment: Acid-base status, trace elements and δ11B. Geochem. Geophys. Geosyst. 13, 1–17 (2012).

    Article 

    Google Scholar 

  • Rae, J. W. B., Foster, G. L., Schmidt, D. N. & Elliott, T. Boron isotopes and B/Ca in benthic foraminifera: Proxies for the deep ocean carbonate system. Earth Planet. Sci. Lett. 302, 403–413 (2011).

    ADS 
    Article 

    Google Scholar 

  • Auscavitch, S. R. et al. Distribution of deep-water scleractinian and stylasterid corals across abiotic environmental gradients on three seamounts in the Anegada Passage. PeerJ 8, e9523 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • DeCarlo, T. M., Holcomb, M. & McCulloch, M. T. Reviews and syntheses: Revisiting the boron systematics of aragonite and their application to coral calcification. Biogeosciences 15, 2819–2834 (2018).

    ADS 
    Article 

    Google Scholar 

  • McCulloch, M. T., D’Olivo, J. P., Falter, J., Holcomb, M. & Trotter, J. A. Coral calcification in a changing world and the interactive dynamics of pH and DIC upregulation. Nat. Commun. 8, 15686 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Henehan, M. J. et al. Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo-CO2 reconstruction. Earth Planet. Sci. Lett. 364, 111–122 (2013).

    ADS 
    Article 

    Google Scholar 

  • Rink, S., Kühl, M., Bijma, J. & Spero, H. Microsensor studies of photosynthesis and respiration in the symbiotic foraminifer Orbulina universa. Mar. Biol. 131, 583–595 (1998).

    Article 

    Google Scholar 

  • Fietzke, J. & Wall, M. Distinct fine-scale variations in calcification control revealed by high-resolution 2D boron laser images in the cold-water coral Lophelia pertusa. Sci. Adv. 8, eabj4172 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Drake, J. L. et al. How corals made rocks through the ages. Glob. Change Biol. 26, 31–53 (2020).

    ADS 
    Article 

    Google Scholar 

  • Blamart, D. et al. Correlation of boron isotopic composition with ultrastructure in the deep-sea coral Lophelia pertusa: Implications for biomineralization and paleo-pH. Geochem. Geophys. Geosyst. 8, Q12001 (2007).

    ADS 
    Article 

    Google Scholar 

  • Jurikova, H. et al. Boron isotope composition of the cold-water coral Lophelia pertusa along the Norwegian margin: Zooming into a potential pH-proxy by combining bulk and high-resolution approaches. Chem. Geol. 513, 143–152 (2019).

    ADS 
    Article 

    Google Scholar 

  • NOAA Deep Sea Coral Research & Technology Program. NOAA National Database for Deep-Sea Corals and Sponges (version 20201021-0), https://deepseacoraldata.noaa.gov/ (2017).

  • Dickson, A. G. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Res. Part A Oceanogr. Res. Pap. 37, 755–766 (1990).

    ADS 
    Article 

    Google Scholar 

  • Stewart, J. A., Anagnostou, E. & Foster, G. L. An improved boron isotope pH proxy calibration for the deep-sea coral Desmophyllum dianthus through sub-sampling of fibrous aragonite. Chem. Geol. 447, 148–160 (2016).

    ADS 
    Article 

    Google Scholar 

  • Mavromatis, V., Montouillout, V., Noireaux, J., Gaillardet, J. & Schott, J. Characterization of boron incorporation and speciation in calcite and aragonite from co-precipitation experiments under controlled pH, temperature and precipitation rate. Geochim. Cosmochim. Acta 150, 299–313 (2015).

    ADS 
    Article 

    Google Scholar 

  • Holcomb, M., DeCarlo, T. M., Gaetani, G. A. & McCulloch, M. Factors affecting B/Ca ratios in synthetic aragonite. Chem. Geol. 437, 67–76 (2016).

    ADS 
    Article 

    Google Scholar 

  • DeCarlo, T. M., Gaetani, G. A., Holcomb, M. & Cohen, A. L. Experimental determination of factors controlling U/Ca of aragonite precipitated from seawater: Implications for interpreting coral skeleton. Geochim. Cosmochim. Acta 162, 151–165 (2015).

    ADS 
    Article 

    Google Scholar 

  • Reeder, R. J., Nugent, M., Lamble, G. M., Tait, C. D. & Morris, D. E. Uranyl Incorporation into Calcite and Aragonite: XAFS and Luminescence Studies. Environ. Sci. Technol. 34, 638–644 (2000).

    ADS 
    Article 

    Google Scholar 

  • Anagnostou, E. et al. Seawater nutrient and carbonate ion concentrations recorded as P/Ca, Ba/Ca, and U/Ca in the deep-sea coral Desmophyllum dianthus. Geochim. Cosmochim. Acta 75, 2529–2543 (2011).

    ADS 
    Article 

    Google Scholar 

  • Chen, S., Littley, E. F. M., Rae, J. W. B., Charles, C. D. & Adkins, J. F. Uranium distribution and incorporation mechanism in deep-sea corals: Implications for seawater [CO32–] proxies. Front. Earth Sci. 9, 159 (2021).

    ADS 

    Google Scholar 

  • Inoue, M., Suwa, R., Suzuki, A., Sakai, K. & Kawahata, H. Effects of seawater pH on growth and skeletal U/Ca ratios of Acropora digitifera coral polyps. Geophys. Res. Lett. 38, L12809 (2011).

    ADS 

    Google Scholar 

  • Gothmann, A. M. & Gagnon, A. C. The primary controls on U/Ca and minor element proxies in a cold-water coral cultured under decoupled carbonate chemistry conditions. Geochim. Cosmochim. Acta 315, 38–60 (2021).

    ADS 
    Article 

    Google Scholar 

  • Mass, T. et al. Cloning and characterization of four novel coral acid-rich proteins that precipitate carbonates in vitro. Curr. Biol. 23, 1126–1131 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Rogers, A. D. Advances in Marine Biology, Vol. 79 (ed Sheppard, C.) 137–224 (Academic Press, 2018).

  • Rodolfo-Metalpa, R. et al. Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat. Clim. Chang. 1, 308–312 (2011).

    ADS 
    Article 

    Google Scholar 

  • Hoarau, L. et al. Unexplored refugia with high cover of scleractinian Leptoseris spp. and hydrocorals Stylaster flabelliformis at lower mesophotic depths (75–100 m) on lava flows at Reunion Island (Southwestern Indian Ocean). Diversity 13, 141 (2021).

    Article 

    Google Scholar 

  • Lindner, A., Cairns, S. D. & Cunningham, C. W. From offshore to onshore: Multiple origins of shallow-water corals from deep-sea ancestors. PLoS ONE 3, e2429 (2008).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stewart, J. A. et al. Refining trace metal temperature proxies in cold-water scleractinian and stylasterid corals. Earth Planet. Sci. Lett. 545, 116412 (2020).

    Article 

    Google Scholar 

  • Seacarb: Seawater Carbonate Chemistry. R package version 3.0.6 .http://CRAN.R-project.org/package=seacarb (2015).

  • Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70, 105–119 (2000).

    Article 

    Google Scholar 

  • Lee, K. et al. The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. Geochim. Cosmochim. Acta 74, 1801–1811 (2010).

    ADS 
    Article 

    Google Scholar 

  • Olsen, A. et al. The Global Ocean Data Analysis Project version 2 (GLODAPv2)—An internally consistent data product for the world ocean. Earth Syst. Sci. Data 8, 297–323 (2016).

    ADS 
    Article 

    Google Scholar 

  • Hemming, N. G. & Hanson, G. N. Boron isotopic composition and concentration in modern marine carbonates. Geochim. Cosmochim. Acta 56, 537–543 (1992).

    ADS 
    Article 

    Google Scholar 

  • Zeebe, R. E. & Wolf-Gladrow, D. A. CO2 in Seawater: Equilibrium, Kinetics, Isotopes Vol. 65 (Elsevier, 2001).

    Google Scholar 

  • Foster, G. L., Pogge von Strandmann, P. A. E. & Rae, J. W. B. Boron and magnesium isotopic composition of seawater. Geochem. Geophys. Geosyst. 11, Q08015 (2010).

    ADS 
    Article 

    Google Scholar 

  • Klochko, K., Kaufman, A. J., Yao, W., Byrne, R. H. & Tossell, J. A. Experimental measurement of boron isotope fractionation in seawater. Earth Planet. Sci. Lett. 248, 276–285 (2006).

    ADS 
    Article 

    Google Scholar 

  • Stewart, J. A. et al. NIST RM 8301 boron isotopes in marine carbonate (simulated coral and foraminifera solutions): Inter-laboratory δ11B and trace element ratio value assignment. Geostand. Geoanal. Res. 45, 77–96 (2020).

    Article 

    Google Scholar 

  • Foster, G. L. Seawater pH, pCO2 and [CO32] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera. Earth Planet. Sci. Lett. 271, 254–266 (2008).

    ADS 
    Article 

    Google Scholar 

  • Schlitzer, R. Ocean Data View, Version 4.6.5 http://odv.awi.de, (2021).


  • Source: Ecology - nature.com

    Biogeographic implication of temperature-induced plant cell wall lignification

    Chemotaxis may assist marine heterotrophic bacterial diazotrophs to find microzones suitable for N2 fixation in the pelagic ocean